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Abstract. Optical coherence tomography (OCT) images are often ac-
quired as highly anisotropic volumes, where the scanning step is dense
along the fast axis but sparse along the slow axis. This affects image
analysis, such as image registration for longitudinal alignment. To create
more isotropic volumes, bicubic interpolation can be used along the slow
axis, but it generally produces blurry features. Registration-based inter-
polation can reduce blurriness, but often fails to generate realistic OCT
images. Deep generative models can sample realistic images, but lack the
structural consistency constraints required for interpolation. In this paper,
we propose an unsupervised image interpolation method that combines
registration-based interpolation with a deep generative model to overcome
their individual limitations and improve the structural accuracy and real-
ism of interpolated OCT images. We compare the proposed method with
both bicubic and registration-based interpolation on real OCT datasets,
and show that it achieves the best interpolation performance.
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1 Introduction

Optical coherence tomography (OCT) uses low-coherence interferometry to
achieve noninvasive high-resolution retinal imaging [9]. It is widely used in the
monitoring of the retina for various retinal and neurological diseases [14,18,19].
The optical wave coherence and natural photon fluctuations of an OCT laser
cause speckle and noise in raw OCT images, affecting retinal layer visibility and
thickness measurements [23]. Some commercial OCT devices, such as Heidelberg
Spectralis OCT, acquire and average multiple images around the same scanning
cross section to reduce speckle and noise. However, it lowers the acquisition speed,
and retinal OCT images are often acquired as highly anisotropic volumes as a
consequence. The scanning step is dense along the fast axis but sparse along the
slow axis. Typical Spectralis retinal OCT volumes have a twenty times difference
in their axes step-sizes. The highly anisotropic acquisitions affect the longitudinal
monitoring of subtle retinal layer changes. This is because the alignment of
retinal OCT acquisitions is difficult to reproduce at two different time points, and
algorithmic alignment of the two OCT volumes is not feasible as registration does
not work well with highly anisotropic volumes. Therefore, retinal OCT image
interpolation along the slow axis is desirable for accurate longitudinal analysis.

Bicubic interpolation achieves a good balance between the interpolation qual-
ity and the processing speed compared with other-order B-spline methods, and
it produces good reconstructions when the signal is sufficiently sampled [22].
However, the sampling along the slow axis in OCT volumes is far less than the
sufficient sampling rate, and thus bicubic interpolation of OCT often produces
blurry images. To obtain sharper images, registration-based interpolation algo-
rithms have been developed [13]. They use small deformation approximation,
time-stationary, or time-dependent vector fields [4] to gradually warp one slice to
a neighboring slice, and thus generate interpolated slices at any position between
two slices. The small deformation approximation linearly scales displacement
fields warping from one slice to the other, but is not consistent under inverse
warping. Both the time-stationary and time-dependent vector field methods are
invertible, and can be used to warp the slice from either direction by choosing the
correct integration interval. By generating smooth transitions of anatomical struc-
tures between adjacent slices, registration-based interpolation algorithms produce
less blurry images than bicubic interpolation. However, they do not necessarily
generate realistic images. Deep generative models achieve superior performance
in sampling realistic images. These models include generative adversarial net-
work (GAN) [5], variational autoencoder (VAE) [10], normalizing flow (NF) [16],
and more recently, denoising diffusion probabilistic model (DDPM) [8], score-
based generative model (SGM) [21], and flow matching [12]. However, they have
not yet been used for OCT image interpolation because they lack structural
consistency constraints required for interpolation.

In this paper, we propose an unsupervised image interpolation method that
combines the benefits of a registration model and a deep generative model
to produce realistic and anatomically consistent interpolated slices. We use
a stationary vector field deformable registration model and a DDPM for the



OCT Interpolation using deformable registration and generative models 3

generative model. Our key idea is to find an image that aligns with the anatomical
trajectory defined by the registration process while staying within the data
distribution learned by the generative model. We first describe the registration
and the generative model, and then describe our interpolation approach by
combining these two models. We compare the proposed method with both
bicubic and a registration-based interpolation on a real OCT dataset. The results
show that the proposed method achieves the best interpolation performance.

2 Method

Registration model. Let retinal OCT images be in a subset of the function
space G = {g|g : Ω ⊂ R2 → R}, where the domain of these functions Ω is a
C∞-differentiable manifold. We assume ∀f,m ∈ G : ∃φ ∈ Diff(Ω) : φ∗m = f ,
where φ∗ is the pullback defined as the composition φ∗m = m ◦ φ. We call f
the fixed image, and m the moving image. The diffeomorphism group Diff(Ω)
is a Lie group, and its Lie algebra is the tangent space TeDiff(Ω) of the Lie
group Diff(Ω) at the identity element e ∈ Diff(Ω), which is isomorphic to the left-
invariant vector field L(Diff(Ω)), a subbundle of the tangent bundle T (Diff(Ω)).
∀v ∈ L(Diff(Ω)), there is an associated flow ϕ : R×Ω → Ω with ∀t ∈ R,

dϕt
dt

= v ◦ ϕt, ϕ0 = e, (1)

and {ϕt|t ∈ R} forms a one-parameter subgroup where ∀t, s ∈ R : ϕtϕs = ϕt+s.
Then, ϕ1 is obtained by integration or the exponential map,

ϕ1 = e+

∫ 1

0

v ◦ ϕτdτ = lim
n→∞

(
e+

ve
n

)n
= exp (ve), (2)

where ve ∈ TeDiff(Ω) is the generator of the one-parameter subgroup, and it is
obtained from v ∈ L(Diff(Ω)) by ve = v(e). It is more efficient to compute the
exponential map by scaling-and-squaring [1, 2] than integration.

The overall registration model is shown in Fig. 1(a). We use a customized
U-Net [17] with parameter ψ to predict a stationary vector field ve from f and
m by minimizing the following objective,

L = Ef,m

[
γ1

(
|| exp (ve)∗m−f ||2

)
+γ2

(
||∇vxe ||2+||∇vye ||2

)
+γ3

(
1−DSC

)]
, (3)

where ve = Rψ(f,m), and f and m are sampled from the training dataset. There
are three terms in Eq. 3, and γ’s are their corresponding weights. The first term
calculates the mean squared error (MSE) between the fixed image f and the
warped moving image exp (ve)

∗
m, where || · ||2 is the L2 norm. The second term

is to regularize the smoothness of ve, where ∇ is the gradient operator, and vxe
and vye are the horizontal and vertical components of ve, respectively. The third
term is the Dice loss between fixed segmentation masks and warped moving
segmentation masks that we incorporate to improve the registration performance.
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Fig. 1. (a) Overall architecture of the registration model. The registration model
Rψ takes in an image pair, f and m, to produce a stationary vector field ve. The
deformation field exp(ve) warps m to f , and lm to lf . (b) Overall architecture of the
generative model. The yellow arrow is the forward diffusion process. The green arrow
is the reverse diffusion, which uses the diffusion model Dθ to gradually remove noise.
The multi-step reverse diffusion is grouped together and denoted as Gθ, which takes
in noise and conditions, and produces the final image. The blue arrow indicates the
encoder network Eη. (c) Schematic of the interpolation model. The red rectangle is
the target slice located at t between two slices x0 and x1. The blue vertical lines are
the matching features. The yellow arrows are the vector field v0 whose associated
deformation field warps x0 to the target slice, and the green arrows are the vector field
v1 whose associated deformation field warps x1 to the target slice. We assume that
∀t ∈ [0, 1] : (1− t)v0 + tv1 = 0.

The segmentation masks include eight retinal layers obtained using AURA [11],
and a vessel plus shadow label that we find through outlier detection from the
mean intensity projection within the retinal pigment epithelium complex (RPE).
Two segmentation masks and corresponding B-scans are shown in Fig. 1(a).
Generative model. We use a conditional autoencoder DDPM as the deep
generative model [8,15]. We do this to make the generative model invertible, and
also incorporate additional conditions during data generation. The generative
model is shown in Fig. 1(b). It consists of an encoder network and a diffusion
network, where both use a diffusion model U-Net [3]. The encoder network Eη
with parameters η, models the posterior distribution of the latent variable z given
an observed OCT image x by a Gaussian distribution qη(z|x) = N (µz|x, σ

2
z|x)

through µz|x, log σz|x = Eη(x), where µz|x is the mean, σz|x is the standard
deviation, and we use the logarithm to make sure that σz|x is positive.

The deep generative model uses a DDPM [8], i.e., variance preserving (VP)
stochastic differential equation (SDE), and linear beta schedule βs for s ∈
{1, . . . , T} with T = 1000 time steps. Let ᾱτ =

∏τ
s=1(1 − βs), the diffusion

network Dθ with parameters θ predicts the Gaussian noise ϵ from the time
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step τ , the noisy image
√
ᾱτx +

√
1− ᾱτ ϵ with x being the clean image, the

condition from the latent space z, and optional segmentation labels l, i.e.,
ϵ̂ = Dθ

(
τ,
√
ᾱτx+

√
1− ᾱτ ϵ, z, l

)
. Both network parameters η and θ are jointly

learned by minimizing the following objective,

L = Ex,ϵ,τ,z

[
δ1

(
||ϵ̂− ϵ||2

)
+ δ2

(
DKL(qη(z|x)||p(z))

)]
, (4)

where x is sampled from training data, ϵ ∼ N (0, I), τ ∼ U(1, . . . , T ), and
z ∼ N (µz|x, σ

2
z|x). There are two terms in Eq. 4, and δ’s are their corresponding

weights. The first term calculates the MSE between the predicted noise ϵ̂ by Dθ

and the ground truth noise ϵ. The second term regularizes the latent space of z,
where the prior p(z) is a standard multivariate Gaussian N (0, I).
Interpolation model. After training the DDPM, we use the sampling strategy
of a denoising diffusion implicit model (DDIM) [20], which allows deterministic
mapping and a large jump between the Gaussian probability space and the
data space. We fix the initial Gaussian noise, and the sampling process becomes
a deterministic function Gθ(z, l) that maps the latent variable z and optional
segmentation labels l to real data. To interpolate a slice xt at position t ∈ [0, 1]
between two adjacent slices x0, x1 ∈ G, we find the optimal latent variable z by,

ẑ = argmin
z

||(1− t)Rψ(Gθ(z, l), x0) + tRψ(Gθ(z, l), x1)||2 , (5)

where Rψ and Gθ are the trained registration and generative models, respectively.
The intuition behind Eq. 5 is that the vector field whose associated deformation
field warps the slice x0 to xt should have a linear relationship based on t to
the vector field whose associated deformation field warps the slice x1 to xt, as
shown in Fig. 1(c). We use the stochastic gradient descent approach to find
the optimal ẑ for Eq. 5, and the interpolated slice is obtained by xt = Gθ(ẑ, l).
Note that we train two independent DDPMs, where one is conditioned on the
segmentation label l and the other one is not. For the DDPM that is conditioned
on the segmentation label l, the segmentation label at t ∈ (0, 1) is obtained by
bicubic interpolation of the boundary segmentation of x0 and x1.

3 Results

Dataset. The retinal OCT dataset contains 377 Spectralis volumes with each
volume having 49 B-scans, and an additional 15 Spectralis volumes with these
volumes having 97 B-scans. The 377 Spectralis volumes comes from 178 subjects,
representing 296 unique eyes. While the additional 15 Spectralis volumes come
from 10 subjects, representing 15 unique eyes. Between the two cohorts there
are no overlapping subjects. Both cohorts have a lateral scanning range of
6 mm × 6 mm. All B-scans have dimensions 496 × 1024, where 496 pixels are
along the A-scan axis and 1024 pixels are along the B-scan axis. We crop each
B-scan from 496 to 256 to remove background, and resize them to 128× 512 to
save memory usage during training. We split the 377 Spectralis volumes that have
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only 49 B-scans into a training dataset of 357 OCT volumes and an validation
dataset of 20 OCT volumes. We use the remaining 15 Spectralis volumes that
have 97 B-scans as a testing dataset.
Training. The registration model Rψ is trained on samples of adjacent B-scans
in the same OCT volume as the fixed and moving pair, because we do not
register images with greater spacing during testing. We also enforce horizontal
displacement by restricting the registration network to only predict the horizontal
component vxe and setting the vertical component vye to 0. We choose the weights
empirically in Eq. 3 to be γ1 = 1, γ2 = 0.01, and γ3 = 0.01, set batch size to
32, use Adam optimizer with learning rate 1× 10−3, and apply 6 recursive steps
in the scaling-and-squaring. The diffusion model Dθ is trained on samples of
each individual B-scan. We train two independent diffusion models, where one is
conditioned on the segmentation labels and the other one is not. For both cases,
we choose the weights empirically in Eq. 4 to be δ1 = 1 and δ2 = 1×10−7, set the
batch size to 8, and use Adam optimizer with learning rate 2.5× 10−5. Models
weights are selected based on the best performance on the validation dataset.
Comparison methods. We compare the performance of the proposed interpo-
lation method with and without segmentation labels as condition for DDPM. We
also compare the proposed interpolation method with bicubic interpolation [22]
and two registration-based interpolation methods, including forward warp (FW)
from x0 and backward warp (BW) from x1 to the target position t ∈ [0, 1] by,

xFW
t = exp (−tRψ(x0, x1))∗x0, xBW

t = exp ((1− t)Rψ(x0, x1))
∗
x1, (6)

where Rψ is the registration model, exp is the exponential map in Eq. 2, x0, x1 ∈ G
are two adjacent slices.
Experiments. We use the testing dataset to compare the five interpolation
methods. We select 49 B-scans with even indices {0, 2, . . . , 96} out of 97 B-scans
from 15 Spectralis volumes, and we run interpolations to predict 48 B-scans with
odd indices {1, 3, . . . , 95}, and compare them with ground truth in terms of peak
signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM)
and show results in Table 1. An example of results is shown in Fig. 2, where
x0 and x1 are two even numbered B-scans, and ground truth shows the original
odd numbered B-scan between them. We see that bicubic interpolation is blurry
and duplicates the vessel plus shadow from the adjacent B-scans. The forward
and backward warp methods produce less blurry but unrealistic images, where
the vessel plus shadows are curved. The proposed methods with or without
segmentation labels generate both high quality images with the correct anatomy.

We also run a deep learning based segmentation algorithm [6,7] on both the
ground truth and interpolated B-scans to obtain eight retinal layer labels. We
obtain the vessel plus shadow label using the outlier detection from the RPE
mean intensity projection. However, for bicubic interpolation, we approximate its
vessel plus shadow label by union from adjacent B-scans, because its contrast is
low and difficult to segment using the outlier detection. Moreover, for the forward
and backward warp methods, we obtain their vessel plus shadow label by applying
the same deformation field to the neighboring B-scan labels, because their vessel
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Table 1. Mean PSNR (Std. Dev.) and mean SSIM (Std. Dev.) for the interpola-
tion methods. Bolded numbers are the best in the row. Asterisk indicates statistical
significance (i.e. Wilcoxon test comparing 1st and 2nd best results gave p-value < 0.05).

Bicubic Forward Backward Proposed Proposed
Warp Warp (No Label) (Label)

PSNR 25.291 24.733 25.025 25.801 25.879*
(1.441) (1.558) (1.519) (1.548) (1.547)

SSIM 0.639 0.629 0.635 0.681 0.683*
(0.067) (0.069) (0.067) (0.071) (0.070)

Proposed
x0 Ground Truth Forward Warp (No Label)

x1 Bicubic Backward Warp Proposed (Label)

Fig. 2. Comparison of the five interpolation methods. The B-scans x0 and x1 are two
adjacent B-scans, and the ground truth B-scan shows the original B-scan x0.5.

Fig. 3. Comparison of the five interpolation algorithms through en-face projection in
the RPE layer of the retinal OCT volumes.

plus shadows are curved, We then calculate the Dice coefficients between labels
on the ground truth and interpolated B-scans using these nine segmentation
labels. The results are shown in Table 2. The results in Tables 1 and 2 show
that the proposed interpolation method with or without labels achieves better
performance than the bicubic, forward warp, and backward warp methods, and
by adding segmentation labels as a condition, the performance improves further.

To better visualize how these interpolation methods affect the retinal OCT
volumetric structure, we do a mean intensity projection in the RPE layer, and
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Table 2. Mean Dice coefficients (Std. Dev.) for different retinal regions and interpola-
tion methods. Bolded numbers are the best in the row. Asterisk indicates statistical
significance (i.e. Wilcoxon test comparing 1st and 2nd best results gave p-value < 0.05).

Bicubic Forward Backward Proposed Proposed
Warp Warp (No Label) (Label)

RNFL 0.879 0.890 0.897 0.900 0.910*
(0.048) (0.042) (0.039) (0.049) (0.036)

GCIPL 0.904 0.922 0.927 0.927 0.933*
(0.043) (0.033) (0.030) (0.033) (0.029)

OPL 0.890 0.900 0.906 0.908 0.916*
(0.042) (0.037) (0.034) (0.035) (0.031)

INL 0.861 0.864 0.871 0.875 0.886*
(0.049) (0.047) (0.045) (0.046) (0.042)

ONL 0.921 0.941 0.945 0.945 0.948*
(0.037) (0.027) (0.024) (0.024) (0.024)

IS 0.864 0.877 0.884 0.885 0.890*
0.068) (0.066) (0.062) (0.062) (0.062)

OS 0.900 0.918 0.924 0.924 0.926*
(0.046) (0.040) (0.037) (0.037) (0.038)

RPE 0.904 0.922 0.927 0.928 0.929*
(0.043) (0.037) (0.034) (0.034) (0.035)

Vessel 0.290 0.313 0.341 0.425 0.426
Shadow (0.133) (0.208) (0.210) (0.200) (0.200)

x0 x0.2 x0.4

x0.6 x0.8 x1.0

Fig. 4. 5× interpolation between x0 and x1 using the proposed method. Note how the
blood vessel plus shadows smoothly transition between the interpolated slices.

show results in Fig. 3. Compared with the bicubic interpolation, the registration-
based interpolation methods are better at connecting the discontinuous vessels.
Moreover, the proposed interpolation further improves upon the registration-
based interpolation both qualitatively and quantitatively. We also investigate if
the proposed method can achieve an arbitrary dense interpolation. To do so, we
use the proposed method with labels to perform 2×, 5× and 10× interpolation
along the slow axis. We can see smooth anatomical transition between two
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No Interpolation 2× Proposed 10× Proposed Original

Fig. 5. En-face images generated by 2× and 10× interpolation using the proposed
method. "No Interpolation" is 49 B-scans and "Original" is the original 97 B-scans.
The blood vessels in this en-face image appear dark.

adjacent slices in Fig. 4 for 5× interpolation, and denser and smoother vessels
from RPE projection in Fig. 5 beyound ground truth for 10× interpolation.

4 Conclusion

In this paper, we propose an unsupervised OCT image interpolation method
using registration and generative models. We compare the proposed method with
both bicubic interpolation and registration-based interpolation on a real retinal
OCT dataset, and show that the proposed method achieves the best interpolation
performance. A limitation of the proposed interpolation method is that it does
not recover the horizontal vessels as good as vertical vessels. It also remains to
be demonstrated that the proposed interpolation method is beneficial for retinal
OCT volumetric registration and improves longitudinal analyses.
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