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Abstract. Reliable 3D reconstruction of tissue architecture from se-
quential 2D multiplex images is challenging due to the noise and dis-
tortions introduced by ultrathin (50 nm) slicing and complex alignment
procedures. Conventional cell tracking methods often fail under such
conditions, resulting in inaccurate linkage of cells across sections. To
bridge this gap, we propose a Bayesian Transformer framework that in-
corporates uncertainty-aware feature embeddings and higher-order graph
matching with belief propagation. By tracking cells across consecutive
sections, our method facilitates the 3D reconstruction of volumetric tis-
sue organization, even in highly noise-prone scenarios. The methodology
begins with a standard segmentation step, followed by feature extraction
that computes morphological, shape, and texture descriptors, as well as
deep CNN embeddings. These rich, uncertainty-sensitive representations
reduce errors caused by both registration artifacts and morphological
variability. We validate the effectiveness of the proposed approach on a
private multiplex dataset of fixed tissue sections and further demonstrate
its generalizability on public time-lapse microscopy videos, showcasing
adaptability to diverse datasets. Experimental comparisons reveal that
our method outperforms baseline tracking techniques, achieving higher
accuracy and more consistent cell linkages across multiple serial sections.
The code used in this research with sample dataset are publicly available
at https://github.com/NabaviLab/bayesian-transformer-cell-tracking.
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1 Introduction

Reliable 3D reconstruction of tissue from sequential 2D fluorescence images re-
mains a key challenge in bioimaging [26]. Thin slicing and tissue alignment intro-
duce noise and distortions that prevent traditional vision methods [1, 9]. Track-
ing cell instances across sections is crucial for linking corresponding cells [23],
enabling precise mapping of molecular expression and lineage relationships in
healthy and diseased tissues [19].

(𝒂) (𝒃)

Fig. 1: Panels (a) and (b) show two consecutive slices of multiplexed immunoflu-
orescence images. Red circles in slice (b) highlight noisy-background artifacts
that obscure the cells and complicate their tracking.

Deep learning has improved 2D cell segmentation [25], but tracking cells
across sections, especially under noisy or variable staining, remains challenging
(Figure 1). Traditional methods struggle with misalignment, morphological in-
consistencies, and background variability [17,32], challenges further intensified in
highly multiplexed imaging, where conditions vary across slices and channels [22].

Existing pipelines combine a segmentation model with an independent track-
ing algorithm, both requiring extensive hyperparameter tuning. While some
modern approaches perform well, they rely on large annotated datasets [10,
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20,28], which are costly to obtain for large-scale studies. Performance often fails
under varying conditions, as many methods overlook uncertainty in feature mea-
surements and subtle morphology changes between sections [2, 11]. Traditional
approaches [16] rely on geometric or intensity-based cost functions, making them
prone to errors when shape or texture varies significantly. Without uncertainty
modeling or higher-order constraints, mislinking can propagate, distorting the
final 3D reconstruction.

In this work, we address the limitations of existing cell tracking pipelines
with an unsupervised approach that relies only on features extracted from au-
tomatically generated segmentation masks. Our method first computes morpho-
logical, shape, and deep descriptors from segmented cells, eliminating the need
for extensive manual annotations. We then construct a higher-order graph where
nodes represent cell features, and edges link candidate matches across frames.
A Bayesian transformer [34] handles variability in cell appearance and imaging
artifacts with minimal hyperparameter tuning. Moreover, belief propagation en-
courages consistent correspondences even under shape changes or misalignments,
enabling scalability across datasets while reducing supervision and manual post-
processing.

Our main contributions can be summarized as follows: 1. We introduce a
Bayesian transformer that refines cell features by modeling uncertainty in mor-
phological, shape-based, and deep descriptors for reducing errors from misalign-
ments or noisy backgrounds in multiplexed tissue sections and live-cell sequences.
2. We formulate cell tracking within a higher-order graph and use belief propa-
gation to enforce consistent matches and reject outliers. This handles major ap-
pearance changes, overlapping cells, and divisions across diverse 2D microscopy
images, ensuring globally consistent lineage mappings. 3. We present an unsu-
pervised approach generalizing across diverse staining and imaging modalities
without ground-truth annotations. 4. We validate on private multiplex imag-
ing data and public benchmarks, showing reliable tracking despite artifacts and
variability, with consistent accuracy improvements and reduced manual curation
across multiple datasets.

2 Methods

The pipeline of the proposed method is divided into three main stages: 1) Fea-
ture extraction, 2) Bayesian transformer embedding, and 3) Higher-order graph
matching as shown in Figure 2.

Feature Extraction We begin by extracting meaningful descriptors for each
cell using the binary masks generated by Cellpose [27], which identifies indi-
vidual cells and assigns each one a unique label [9]. Next, we crop each cell’s
region from the raw image and compute a range of descriptors to form a feature
vector xt

i ∈ Rd. Specifically, we gather morphological properties (e.g., centroid,
bounding box, area, perimeter, aspect ratio), various shape descriptors (Zernike
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moments [29], elliptical Fourier descriptors [15], skeleton-based measures [4]),
and texture features (Haralick descriptors [12] and Local Binary Patterns [21]).

We also use a pretrained ResNet-50 [13] (initialized with standard Ima-
geNet [8] weights) to obtain deep CNN embeddings. Specifically, for each seg-
mented cell, we crop its grayscale bounding patch, replicating that into three
channels, and then apply the standard resizing and normalization pipeline. Next,
the patch is passed through the truncated ResNet-50 to generate a feature vec-
tor for each individual cell in each frame. These descriptors are concatenated
into a single vector per cell. Any feature columns that are entirely missing or
constant across all cells are removed. The resulting feature matrix for frame t is
Xt = [xt

1; . . . ;x
t
N ] ∈ RN×d, where N is the number of cells in that frame, and

this matrix is fed to the Bayesian-transformer embedding and graph-matching
stages.

𝑥1
𝑥2

𝑥3

𝑥𝑁

Input Cell 
Feature

(𝒂)

(𝒃)

(𝒄)

Bayesian Transformer

Multi-Head
Self-Attention

Norm

Norm

FeedForward

Ba
ye

si
an

 L
ay

er

Sa
m

pl
in

g 
&

 
C

on
tr

as
tiv

e 
Lo

ss

𝝁𝒆, 𝐥𝐨𝐠 𝝈𝒆
𝟐

Frame 𝑡 Frame 𝑡 + 1

Frame 𝑡 Frame 𝑡 + 1

𝐳𝐣
𝐭+𝟏𝐳𝐢

𝐭
𝒎𝒆𝒔𝒔𝒂𝒈𝒆 𝑴(𝒊,𝒋)

Fig. 2: The overall structure of the proposed method; (a) Feature extraction from
segmentation masks; (b) Bayesian transformer-based embedding for capturing
parameter uncertainty; (c) Higher-order graph matching with belief propagation
and final lineage export.

Bayesian Transformer Embedding We aim to learn a reliable representation
of the cell features that also encodes a probabilistic notion of uncertainty. To
achieve this, we adopt a Bayesian transformer encoder, which applies Bayesian
linear layers in both the multi-head self-attention module (handling the query
(Q), key (K), and value (V) projections, as expressed in Equation 1) and the
feed-forward sub-layers, while preserving the usual residual connections and layer
normalization.

Q = XWQ, K = XWK , V = XWV , WQ,K,V ∈ Rdmodel×dmodel , (1)

where X∈RB×1×dmodel (with dmodel = 64 and B the mini-batch size) and each
projection matrix satisfies W = µW + σW ⊙ε, ε∼N (0, I). For simplicity, we
use W to stand for any one of the three projection matrices WQ,K,V . Here



Bayesian Transformers and Higher-Order Graph Matching for Cell Tracking 5

µW , σW ∈ Rdmodel×dmodel are the element-wise mean and standard deviation of
the weights, and ⊙ denotes the Hadamard (element-wise) product. Splitting into
heads reshapes Q to (B, h, 1, dh); the same applies to K and V.

At each frame t we therefore feed a tensor X ∈ RB×1×dmodel . For each linear
layer we place factorised Gaussian posteriors on both the weights W and the
bias vector b:

W ∼ q(W |µW , σW ), b ∼ q(b |µb, σb), (2)

where W is the weight matrix of the linear layer, and q denotes an approximate
posterior distribution over W. Also, µW and σW are trainable parameters with
the same dimension as W. We employ the reparameterization trick [14,24], which
enables gradient-based learning through random variables by expressing W as
a deterministic function of µW , log σW , and a noise sample. The forward pass
samples:

W = µW + exp
(

1
2 log σ

2
W

)
ϵ, ϵ ∼ N (0, I), (3)

where µW and σW remain learnable weights, and ϵ is a standard normal sample.
By modeling µW and σW for each layer (rather than a single fixed W), we
capture parameter uncertainty during the Q/K/V transformations. We then
split these into h heads, each of dimension dh = dmodel/h. A scaled dot-product
attention is computed for each head:

Attn(Q,K,V) = softmax
(

1√
dh

QKT
)
V. (4)

The transformer encoder produces hidden states that are then mapped to
µe and log σ2

e parameters (embedding mean and variance). Specifically, we stack
multiple encoder blocks and, at the final stage, pass their output through two
Bayesian linear layers, Wµe

and Wlog σ2
e
, which yield these parameters. After

the final encoder block produces a hidden state H ∈ RB×1×dembed , we apply
µe = Wµe

H and log σ2
e = Wlog σ2

e
H.

We sample consecutive frames (t, t+ 1) and randomly select subsets of cells
from each to form training examples. Specifically, let xt

i 7→ (µt
i, log σ

t
i), xt+1

j 7→
(µt+1

j , log σt+1
j ). We then reparameterize each to get a sample: zti = µt

i +

exp
(

1
2 log σ

t
i

)
ϵi, ϵi ∼ N (0, I), and similarly sample zt+1

j from (µt+1
j , log σt+1

j ).
To ensure that embeddings of the same cell (across consecutive frames) are
pulled together, while different cells are pushed apart, we minimize a margin-
based contrastive loss [7]. For every anchor cell i we pair one positive j (the same
cell in frame t+1) and sample one negative k (a different cell in that frame), so
k indexes the negative example:

Lcontrast = max
(
0,

∥∥zti − zt+1
j

∥∥2 −
∥∥zti − zt+1

k

∥∥2 + m
)
, (5)

where ∥ · ∥2 is the squared Euclidean norm in Rdembed and m is a margin (set to
0.2).
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Higher-Order Graph Matching After obtaining embeddings for each cell,
we construct a higher-order graph to match cells between consecutive frames.
Specifically, let each cell i in frame t have an embedding cti ∈ Rd′

, where
d′ is the dimension of the Bayesian transformer’s output space. We connect
these cells across frames by two types of edges: (i) single-node edges (linking
a single cell i in frame t to a candidate cell j in frame t + 1), and (ii) triplet
edges (linking triplets (i1, i2, i3) in frame t to corresponding triplets (j1, j2, j3) in
frame t+ 1). Triplets are not required to be disjoint; we enumerate every three-
cell combination within a distance threshold so that a single node may belong to
multiple triplets. This overlap lets belief propagation share geometric evidence
across neighboring triplets. We define the matching cost for each single-node
edge (i, j) as:

Cost(i, j) = Dist
(
cti, c

t+1
j

)︸ ︷︷ ︸
first-order

+ M(i,j)︸ ︷︷ ︸
message term

, (6)

where Dist(·, ·) is the Euclidean distance in embedding space, and M(i,j) is the
message accumulated through a belief-propagation. While the first-order term
handles direct embedding distances, the message M(i,j) aggregates information
from triplet edges to ensure higher-order consistency. We store the message for
each single-edge (i, j) at iteration ℓ , M (ℓ)

(i,j), and iteratively update them based
on triplet edges that connect (i, j) with (i′, j′) forming (i, i′) 7→ (j, j′). For each
iteration ℓ+ 1:

M
(ℓ+1)
(i,j) =(1− γ)

∑
(i′,j′)∈E(i,j)

[
− costtriplet(i, i′, j, j′)

]
× exp

(
− 1

2

[
log σ2

i + log σ2
j

])
+ γM

(ℓ)
(i,j),

(7)

where E(i, j), as the set of all triplet edges that contain the single-node edge (i, j),
enumerates triplet edges that include (i, j), costtriplet [30] measures geometry
differences among triplets, and log σ2

i , log σ
2
j are the variances from the Bayesian

transformer (omitting any layer index for brevity). The damping factor γ ∈ (0, 1)
controls the integration of new vs. old messages.

Final Assignment and Tracking After L iterations, the final messages M (L)
(i,j)

form a global cost matrix for cell matching, from which we determine possible
links (i → j). If a single cell i links to multiple successors, we label it a division
event. Unmatched cells are considered to have disappeared or newly appeared.
Finally, we compile these matches, divisions, and unmatched events across frames
into a consistent lineage table.

3 Experiment Results

Datasets To validate our method, we first used an internally acquired Ultra-
plex fluorescence microscopic dataset in 10 consecutive frames, which serves as
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a challenging testbed prone to slice-to-slice geometric distortions and noise. Sec-
ond, we used four representative reference datasets from the Cell Tracking Chal-
lenge [17,32], namely Fluo-C2DL-MSC, PhC-C2DL-PSC, Fluo-C2DL-Huh7, and
Fluo-N2DL-HeLa, capturing a range of cell lines (e.g., HeLa, Huh7, and mes-
enchymal stem cells) and imaging conditions (phase-contrast, fluorescence), each
with different acquisition rates and noise characteristics.

Evaluation Metrics We adopt four standard cell-tracking metrics: false pos-
itive (FP) (%), the percentage of incorrect detections; false negative (FN) (%),
the percentage of missed detections; ID-Swaps, incorrect identity reassignments;
and appearing/disappearing errors (ADE) (%), the percentage of incorrectly
identified cell appearing or disappearing events relative to all real appearing and
disappearing events. For public benchmarks, we use the tracking accuracy (TRA)
metric [18], which compares predicted lineage forests with reference data. TRA
ranges from 0 to 1, reflecting the minimal graph edits needed to align predicted
and ground-truth lineage graphs; higher scores indicate fewer linking or division
errors.

Quantitative Analysis on Ultraplex Microscopic Images Table 1 presents
a comparison of cell tracking methods on the Multiplex dataset, which includes
challenges such as cell appearing/disappearing events, imaging artifacts, and
registration misalignment. Our method achieves the lowest false negative rate,
demonstrating its ability to detect newly appearing cells, while Bayesian-based
and graph neural network (GNN)-based methods struggle in these scenarios. It
also proves more resilient to artifacts, achieving the lowest false positive rate, as
it leverages deep feature extraction and higher-order graph matching to better
distinguish real cells from noise and imaging distortions. In terms of identity
consistency, our approach records only 2 ID swaps, far lower than Hungarian-
based (9) and Bayesian-based (6) methods, ensuring robust tracking even with
registration misalignment. Additionally, it achieves the lowest ADE, reinforcing
its ability to localize cells more precisely compared to other methods. With
an overall accuracy of 0.958, it surpasses DLPM-Net and GNN-based tracking,
confirming the advantages of integrating higher-order graph matching, Bayesian
neural networks (BNN), and deep feature extraction in handling complex cell
tracking challenges.

Quantitative Analysis on Public Datasets Table 2 presents a performance
comparison of state-of-the-art cell tracking methods on public microscopy datasets
using TRA scores. In Fluo-C2DL-MSC and PhC-C2DL-PSC, it surpasses all
baselines, highlighting its effectiveness in phase-contrast and fluorescent mi-
croscopy, where intensity-based tracking often fails. A notable improvement is
seen in Fluo-C2DL-Huh7, confirming its robustness in handling cell appearance
variations. The only exception is Fluo-N2DL-HeLa, where Contrastive Tracking
slightly leads. This may be due to HeLa cells’ dense morphology, which benefits
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Table 1: Performance comparison on the Ultraplex images. For FP, FN, ID-
Swaps, ADE, lower is better, and for accuracy metrics, higher is better.

Method FP (%) FN (%) ID-Swaps ADE (%) Accuracy

Bayesian-based [31] 7.9 13.5 6 11.8 0.812
Hungarian first-order 10.4 15.9 9 14.5 0.625
GNN-based [3] 5.2 10.2 4 8.5 0.886
DLPM-Net [33] 5.0 9.5 3 7.9 0.851

Proposed (Ours) 4.1 8.8 2 6.3 0.958

Table 2: Performance comparison on public microscopy datasets (TRA scores).
The highest value in each row is in bold.
Dataset Contrastive Tracking [35] CMTT-JTracker [6] Ultrack [5] Proposed (Ours)

Fluo-C2DL-MSC 0.741 0.709 0.738 0.756
PhC-C2DL-PSC 0.927 0.863 0.932 0.941
Fluo-C2DL-Huh7 0.851 0.810 0.830 0.894
Fluo-N2DL-HeLa 0.967 0.919 0.930 0.925

from contrastive learning’s strength in differentiating fine-grained variations. De-
spite this, our method remains highly competitive across all datasets, reinforcing
its generalizability and ability to tackle challenges such as motion variations, cell
division, and imaging artifacts more effectively than existing alternatives.

Ablation Study Table 3 presents an ablation study evaluating the effect of deep
feature extraction and graph matching order on tracking accuracy. The results re-
veal that graph matching order has the most significant influence, as higher-order
(HO) methods consistently outperform their first-order (FO) counterparts. Ad-
ditionally, incorporating deep embeddings (DE) leads to an improvement across
all methods, highlighting their role in optimizing tracking performance by pro-
viding a more robust representation of cell features. While the difference between
BNN and discriminative transformer (DT) is relatively smaller compared to the
impact of deep embeddings or graph order, both contribute to performance en-
hancement.

Table 3: Ablation study evaluating the impact of different model components on
tracking accuracy with and without deep features.

Method HO + DE HO + w/o DE FO + DE FO + w/o DE
BNN 0.814 0.795 0.725 0.681
DT 0.847 0.801 0.738 0.714
Proposed (Ours) 0.958 0.910 0.863 0.832
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4 Conclusion

In this work, we introduced a Bayesian transformer framework for cell tracking
in multiplexed tissue sections, addressing the inherent challenges imposed by
imaging artifacts, registration misalignments, and sample preparation variabil-
ity. Our method integrates uncertainty-aware feature embeddings with higher-
order graph matching and belief propagation, which reduces error propagation
and improves the consistency of cell linkages. Evaluations on both a private
multiplex dataset and public cell tracking benchmarks show that the proposed
approach outperforms traditional tracking pipelines by achieving fewer missed
or false detections, lower ID switches, and higher overall accuracy. Also, our
approach requires no manually annotated tracking labels or supervised train-
ing examples. Instead, it relies entirely on feature embeddings derived directly
from automated segmentations, reducing the need for extensive manual cura-
tion and facilitating generalizability across diverse imaging modalities. These
findings show that leveraging higher-order consistency constraints, along with
uncertainty modeling in deep embeddings, holds potential for enabling more
reliable 3D tissue reconstructions in complex biological imaging settings.
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