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Abstract. Colorectal cancer is a leading cause of cancer-related deaths
worldwide, and precise polyp segmentation plays a crucial role in its early
detection. U-shaped architectures are widely used for polyp segmenta-
tion due to their ability to capture multi-scale contextual information
effectively. However, it is suboptimal to solely use top-down or bottom-
up fusion flow in traditional U-shaped architectures. Additionally, most
existing methods only focus on improving the feature fusion module, of-
ten introducing more computational costs. In this work, we propose a
novel and efficient nested multi-scale feature aggregation network that
integrates high-level semantic information with low-level boundary de-
tails within skip connections, effectively handling the diverse shapes and
sizes of polyp regions. Specifically, we introduce a bidirectional FPN-in-
FPN module that fuses features across stages through both bottom-up
and top-down pathways. This module adds only 0.12M extra parame-
ters with minimal computational overhead while significantly enhancing
segmentation performance in small networks. Extensive experiments on
polyp segmentation datasets demonstrate that our network outperforms
existing methods in both accuracy and efficiency. Code is available at
https://github.com/Yejin0111/FPN-in-FPN
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1 Introduction

Colorectal cancer is a leading cause of worldwide cancer-related deaths, and
early detection is crucial for improving prognosis [9]. Intestinal polyps, often
detected during colonoscopy, serve as early indicators of the disease. Accurate
and timely segmentation of these polyps is essential for aiding diagnosis, reducing
missed detections, and enhancing overall diagnostic efficiency. However, polyp
segmentation is challenging due to the variability in shape and size, and the
subtle boundaries that often blend with surrounding tissues.
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Fig. 1: Tllustration of different feature aggregation methods in U-Shaped archi-
tecture. (a) Traditional UNet, (b) UNet variants, and (c¢) UNet++, which only
focus on improving the feature fusion module, often making it more complex and
computationally expensive. (d) MSNet. Previous approaches are suboptimal in
feature fusion flow, as they consider only a single pathway, such as top-down or
bottom-up. (e¢) FPN-in-FPN, which introduces an effective and efficient bidirec-
tional feature fusion approach with minimal computational overhead.

Existing polyp segmentation methods are typically based on U-Net [10], a
widely used encoder-decoder architecture [5,6] with Feature Pyramid Networks
(FPN) [7] technique. The key challenge of the U-shaped structure is efficiently
and effectively integrating multi-scale semantic information across stages to ac-
curately identify diverse polyps. By now, several studies have explored multi-
scale feature fusion from different perspectives. As shown in Fig 1(a), conven-
tional U-Net fuses up-sampled feature maps from the decoder with feature maps
skipped from the encoder using concatenation or addition operations, leading to
two critical issues [18]: First, element-wise addition or concatenation may intro-
duce redundancy or weaken level-specific features. Second, limiting the fusion
to only two-level feature maps restricts the richness of feature representations.
U-Net variants, as shown in Fig 1(b), address the first challenge with advanced
feature fusion modules, such as attention mechanisms [2,5] and gate mecha-
nisms [16,19], but at the cost of increased computational overhead. Meanwhile,
U-Net++ [21,22] mitigates the second issue by introducing nested and dense skip
connections, improving the feature propagation across different levels, as shown
in Fig 1(c). Recently, an advanced multi-scale feature fusion method, MSNet [20]
as shown in Fig 1(d), obtains rich multi-scale difference information through a
multi-scale subtraction module, which extracts the difference features between
adjacent encoder stages. Its improved version, M?SNet [18] extends this module
into an intra-layer multi-scale subtraction module, providing the decoder with
both pixel-level and structure-level difference information. The essential draw-
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back of the MSNet series is its subtraction module, which can unintentionally
discard important information when both feature maps have similar details.

Therefore, in this paper, we propose FPN-in-FPN: A Nested Multi-Scale
Aggregation Network, a novel architecture designed to enhance multi-scale fea-
ture fusion. Our method leverages bidirectional feature fusion (top-down and
bottom-up paths) to effectively integrate high-level semantic-rich information
with low-level boundary-rich details. Unlike previous approaches that rely solely
on top-down or bottom-up fusion, our method enables more comprehensive fea-
ture aggregation at each stage, effectively integrating both local and global infor-
mation for all feature maps. Specifically, as shown in Fig 1(e), the FPN-in-FPN
module relies on a bidirectional architecture that first combines high-resolution
boundary-rich features with low-resolution semantic-rich features via a bottom-
up pathway, followed by a top-down fusion of low-resolution semantic-rich fea-
tures with high-resolution boundary-rich features. To control additional compu-
tational costs, we incorporate lightweight convolutional blocks for FPN-in-FPN
module, introducing only 0.12M extra parameters with minimal computational
overhead. Additionally, we adopt deep supervision in the decoding stages, provid-
ing direct feedback at multiple levels of the decoder to enhance the segmentation
of small or poorly defined polyps. In summary, the contributions of this paper
can be summarized as follows:

— We propose a novel and efficient nested multi-scale feature aggregation net-
work for polyp segmentation, which integrates high-level semantic informa-
tion with low-level boundary details within skip connections, effectively han-
dling the diverse shapes and sizes of polyp regions.

— A bidirectional FPN-in-FPN module is proposed to boost multi-scale fea-
ture fusion across stages through bottom-up and top-down pathways. This
module adds minimal computational cost while significantly improving seg-
mentation performance in small networks.

— Experiments on five polyp segmentation datasets, detailed in Table 1, show-
case our method’s efficiency and effectiveness. Our approach delivers com-
petitive performance with just 2.55G MACs and 4.01M parameters, making
it notably faster than state-of-the-art models.

2 Methodology

In this section, we detail our proposed FPN-in-FPN: A Nested Multi-Scale Ag-
gregation Network, which is designed for effective and efficient polyp segmenta-
tion. The overall architecture consists of three main components: 1) Encoder,
which extracts features from the input image, 2) FPN-in-FPN module, our
core contribution, which fuses feature information across stages via both bottom-
up and top-down pathways, and 3) Decoder, which maps the feature maps to
an output mask. In the following sections, we present the details of our proposed
FPN-in-FPN method.
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Fig. 2: Overview of U-Shaped architecture with FPN-in-FPN.

2.1 Overview of proposed framework

The framework overview is illustrated in Fig 2, given an input image X €
R3*HXW " backbone CNN (i.e., VAN [3]) serves as the encoder, extracting five
feature maps {F}, Fy, F3, Fy, F5}, where F; has the highest spatial resolution
and is rich in boundary features, while F5 has the lowest resolution and contains
semantic-rich information. In our method, F; is not included in the feature fu-
sion module. Due to the differing channel dimensions of these feature maps, we
apply a series of 1 x 1 convolutional layers to align the channel dimensions of
{FQ, F’g7 F4, F5} Formally,

F; = Convyyy(Fy), i=1,2,3,4, (1)

where each Conviy; outputs a feature map of size (C, H;, W;) at each i stage,
with C' = 32 as the unified channel dimension used in our experiments. The
channel dimension reduction is illustrated in Figure 2, e.g., “32->32". After fusing
all encoder features with FPN-in-FPN module, the decoder further refines the
multi-scale features through addition. Specifically, at each stage, the decoder
takes two feature maps from different levels and produces an aggregated output:

F; = Convsys(F] + UpSample(F,,)), (2)

?

where F/ and F} are the enhanced feature from the FPN-in-FPN module and the
decoder feature used to generate the segmentation mask at stage i, respectively.
An additional convolutional layer is applied for smoothing. Since polyps often
have ambiguous boundaries, small sizes, or irregular shapes, we employ a multi-
branch deep supervision strategy to enhance robust learning. During training,
each branch is supervised by the groundtruth mask, providing gradients that
help the network capture both high-level semantics and fine-grained boundary
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details. The multi-scale feedback improves model generalization, particularly for
challenging polyp cases.

2.2 FPN-in-FPN Module

After the channel translation, the aligned encoder features {F27 Fg, F4, F 5} serve
as inputs for the feature fusion. Instead of a traditional single top-down or
bottom-up pass, our network employs multiple stacked FPN blocks, each per-
forming both bottom-up and top-down aggregation. Specifically, FPN-in-FPN
is a bidirectional architecture that first combines high-resolution boundary-rich
features with low-resolution semantic-rich features via a bottom-up pathway, fol-
lowed by a top-down fusion of low-resolution semantic-rich features with high-
resolution boundary-rich features. To control additional computational costs, we
incorporate lightweight convolutional blocks for FPN-in-FPN module, introduc-
ing only 0.12M extra parameters with minimal computational overhead.
Bottom-Up Path. In each FPN-in-FPN block, it first fuses high-resolution
boundary-rich features into low-resolution semantic-rich features through down-
sampling, which can be formulated as:

F2 = axConvBlock(Fi4) + (1 — o) xConvBlock(DownSample( Fi%)), (3)
Fl = axConvBlock(Fl%) + (1 — o) xConvBlock(DownSample(Fi%)), (4)
F2 = axConvBlock(Fi%) + (1 — o) xConvBlock(DownSample(Fi%))  (5)

where ConvBlock(-) is the Conv-BatchNorm-ReLU operation, we achieve
DownSample(-) with bilinear interpolation to match the target spatial size, «
is a learnable parameter. The input feature Ffd for the FPN-in-FPN module
is initially set to F,. After each fusion, a convolutional layer with 3 x 3 kernel
refines the aggregated feature.

Top-Down Path. Following the bottom-up path, the fused bottom-up fea-
tures are then passed through a top-down path that propagates low-resolution
semantic-rich information back to high-resolution boundary-rich features:

Fl4 = axConvBlock(Fl) + (1 — ) xConvBlock(UpSample(FL")),  (6)
Fl = axConvBlock(FY) + (1 — ) xConvBlock(UpSample(F*)),  (7)
Fi4 = axConvBlock(FY") + (1 — o) xConvBlock(UpSample( FE™)) (8)

where UpSample(-) also denotes bilinear interpolation to match the target spa-
tial resolution, followed by a refining convolution. After passing through n FPN-
in-FPN blocks, the final fused feature F}? from the top-down path becomes F.

Overall, this nested FPN design enables dual-direction, multi-scale feature
aggregation that enhances high-level context while preserving fine-grained spa-
tial details, making it particularly effective for accurate polyp segmentation
across diverse lesion sizes and appearances.
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3 Experiments

3.1 Datasets

We conducted experiments on five datasets, including CVC-T [13], Kvasir [4],
CVC-ClinicDB [1], CVC-ColonDB [12], and ETIS [11]. Following the experimen-
tal setup of [2,6], we used a portion of images from CVC-ClinicDB and Kvasir
for training, consisting of 550 and 900 images, respectively. Thus, the training
set consisted of 1450 images, and the remaining data from these two datasets
were used to test the model’s learning ability. In addition, the remaining three
datasets were used to evaluate the model’s cross-dataset generalization perfor-
mance, consisting of 60, 380, and 196 images, respectively.

3.2 Implementation Details

We implement the proposed framework in PyTorch and train it on an NVIDIA
Tesla A100 GPU. Following a typical FPN design, we adopt VAN [3] (pretrained
on ImageNet) as our encoder backbone, while the remaining layers are ran-
domly initialized. The model is trained for 120 epochs with a batch size of 16,
using the AdamW optimizer (weight decay = 1 x 10™%) and an initial learn-
ing rate of 1 x 107%. We further apply data augmentation techniques such as
random flipping, random rotation, and multi-scale training. For evaluation, we
use two widely adopted metrics, mean Dice (mDice) and mean Intersection over
Union (mloU), as primary quantitative measures. Additionally, Frames Per Sec-
ond (FPS), Multiply ACcumulate operations (MACs) and parameter count are
used to assess model efficiency.

Table 1: Comparison of SOTA approaches on five polyp segmentation datasets.
CVC-ClinicDB|_ Kvasir CVC-T__[CVC-ColonDB] __ETIS

Method Backbone |MACs Params FPS mDice mloU |mDice mloU|mDice mloUmDice mloU |mDice mloU
UNet[10] - - - - 10.823 0.755 | 0.818 0.746|0.710 0.627|0.512 0.444 |0.398 0.335
PraNet|2] Res2Net50 | 13.15  32.55 44.42{0.899 0.849 | 0.898 0.840|0.871 0.797|0.709 0.640 |0.628 0.567
ResUNet++[5] - 134.12 14.48 25.25/0.846 0.786 | 0.807 0.727|0.687 0.598|0.588 0.497 |0.337 0.275
SANet[15] Res2Net50 | 11.32  23.90 34.94|0.916 0.859 | 0.904 0.847|0.888 0.815|0.752 0.669 |0.750 0.654
MSNet[20] Res2Net50 | 17.03  29.74 44.34|0.921 0.879 | 0.907 0.862|0.869 0.807|0.755 0.678 |0.719 0.664

MZ2SNet[18] Res2Net50 | 17.09 29.74 44.01]0.922 0.880 | 0.912 0.861|0.903 0.842|0.758 0.685 |0.749 0.678
CaraNet|8] Res2Net101| 21.76  46.64 26.97|0.921 0.876 | 0.913 0.859|0.902 0.836|0.775 0.700 |0.740 0.660
LDNet[17] Res2Net50 | 66.57 33.38 21.45{0.923 0.872 | 0.912 0.855|0.893 0.826|0.794 0.715 |0.778 0.707
SSFormer|14] MiT-b2 |19.10 29.57 52.38/0.916 0.873 |0.925 0.878|0.887 0.821]0.772 0.697 |0.767 0.698
FPN-in-FPN VAN-BO | 2.55 4.01 61.25/0.921 0.872 |0.914 0.860|0.900 0.837|0.786 0.710 |0.802 0.724

3.3 Comparisons with State-of-the-Art

As shown in Table 1, the proposed FPN-in-FPN method demonstrates compet-
itive performance compared to state-of-the-art models across all five benchmark
datasets, achieving superior or comparable results in both mDice and mloU.
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On the CVC-ClinicDB dataset, our method achieves an mDice of 0.921 and an
mloU of 0.872, surpassing models like U-Net, PraNet, and ResUNet++, while
remaining competitive with the highest reported mDice of 0.923 and mloU of
0.879. Similarly, on the Kvasir dataset, it attains a competitive mDice of 0.914
and an mloU of 0.860, outperforming leading methods such as the MSNet se-
ries and CaraNet. The method also excels on the CVC-T dataset, achieving an
mDice of 0.900 and an mloU of 0.837, outperforming models like LDNet and
SSFormer, which struggle with complex polyp structures. On CVC-ColonDB,
our method achieves an mDice of 0.786 and an mloU of 0.710, ranking second
and very closely approaching the top-performing method in both metrics. Fi-
nally, on the difficult ETIS dataset, our approach achieves an mDice of 0.802
and an mloU of 0.724, surpassing all existing state-of-the-art methods by a large
margin, further demonstrating its robustness. Moreover, as shown in Table 1,
our method achieves a favorable balance between accuracy and efficiency, with
significantly lower computational costs in terms of MACs, parameters, and FPS,
compared to state-of-the-art models. In summary, the FPN-in-FPN architecture
provides a highly effective and efficient solution for polyp segmentation, offering
improved multi-scale feature fusion and superior handling of challenges such as
irregular polyp shapes and subtle boundaries compared to existing methods.

Table 2: Ablation study on Different Numbers of FPN-in-FPN modules.
CVC-ClinicDB Kvasir CVC-T |CVC-ColonDB ETIS

mDice mloU |mDice mloU|mDice mloU|mDice mloU |mDice mloU
Baseline| 0.911 0.859 | 0.901 0.847|0.877 0.809|0.774 0.695 |0.764 0.676
N=1 0.915 0.862 |0.913 0.859| 0.89 0.822|0.765 0.694 |0.774 0.686
0.921 0.872 |0.914 0.860|0.900 0.837|0.786 0.710 | 0.802 0.724
0.919 0.874 |0.911 0.858|0.897 0.834|0.791 0.714 |0.781 0.707
0.912 0.863 |0.910 0.859|0.899 0.834|0.785 0.708 |0.763 0.686

Method

N
N
N

[
AW

3.4 Ablation on Different Numbers of FPN-in-FPN modules

In this ablation study, we analyze the impact of varying the number of FPN-
in-FPN modules in the network. The results in Table 2 show that increasing
the number of iterations from N = 1 to N = 2 improves performance across
all datasets, with noticeable gains in both mDice and mIoU scores. Specifically,
the performance improvement is particularly significant on the three challenging
datasets: CVC-T (+0.10 mDice, +0.15 mlIoU), CVC-ColonDB (+0.21 mDice,
+0.16 mIoU), and ETIS (+0.28 mDice, +0.58 mIoU). However, beyond N = 2,
the performance begins to decline, except for CVC-ColonDB, suggesting that
excessive feature fusion does not consistently benefit the network. This indicates
that only a few FPN-in-FPN modules are optimal for polyp segmentation, bal-
ancing feature representation effectiveness and computational efficiency. Based
on these findings, we set N = 2 in our experiments to achieve the optimal
trade-off between performance and computational cost for polyp segmentation.
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0.852
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with different backbones.

0.8775

0.8649

VAN-B3

Table 3: Ablation experiments on com-
putational cost in terms of the number
of parameters and MACs.

Method Baseline FPN-in-FPN
MACs (G) Params (M)|MACs (G) Params (M)
VAN-BO 2.31 3.89 2.55 4.01
VAN-B1 6.38 13.41 6.62 13.52
VAN-B2| 12.61 26.13 12.85 26.24
VAN-B3| 22.41 44.31 22.65 44.43

3.5 Ablation on Computational Cost of FPN-in-FPN module

In this ablation study, we analyze the impact of computational cost after inte-
grating the FPN-in-FPN module into networks with different complexities. The
average mDice across five datasets (Fig. 3) shows that the smallest vanilla VAN-
B0 achieves only 0.8454 mDice, but this improves to 0.8646 after incorporating
our FPN-in-FPN module, closely approaching the largest VAN-B3 baseline of
0.8649. Notably, the FPN-in-FPN module requires only an additional 0.24G
MACs and 0.12M parameters as shown in Table 3, making it significantly more
efficient than the VAN-B3 baseline. In addition, our FPN-in-FPN module im-
proves all baselines with the same extra computational cost.

EEEEEEE
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Image UNet ResUNet++ MSNet M2SNet  FPN-in-FPN

Fig. 4: Visual comparison of different state-of-the-art methods.
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Conclusion

We proposed FPN-in-FPN: A Nested Multi-Scale Aggregation Network for polyp
segmentation, which effectively fuses multi-scale features through top-down and
bottom-up pathways. This design captures both global context and fine details,
improving accuracy, especially for challenging polyp cases. Deep supervision
further enhances boundary detection and small lesion segmentation. Extensive
experiments show that our method in general outperforms state-of-the-art ap-
proaches, especially taking into account both accuracy and efficiency.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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