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Abstract. In this work, we introduce EfficientMedNeXt—a lightweight,
high-performance segmentation architecture developed through a two-
phase optimization process applied to the MedNeXt architecture. To
this end, we first optimize the decoder by reducing the high-resolution
redundancy and unifying the decoder channels across stages for im-
proved efficiency. Then, we introduce a new Dilated Multi-Receptive
Field Block (DMRFB) to capture the multi-scale spatial context effi-
ciently without increasing the kernel sizes and relying on the channel ex-
pansion convolutions. Extensive evaluations on BTCV, FeTA, and MSD
show that EfficientMedNeXt-L achieves 87.0% DICE score on BTCV
(+1.04% over MedNeXt-L) with 96.5% fewer parameters and 77.03%
lower FLOPs. In addition, EfficientMedNeXt-S offers comparable DICE
score, improved HD95, and 78.1% higher throughput while reducing pa-
rameters by 98.5% and FLOPs by 95%. These results demonstrate Effi-
cientMedNeXt’s efficiency and accuracy, making it well-suited for real-
world clinical applications. Our implementation is available at https:
//github.com/SLDGroup/EfficientMedNeXt.

Keywords: Medical Image Segmentation · Multi-receptive Convolutions
· Dilated Convolutions · Efficient 3D CNN.

1 Introduction

Medical image segmentation plays a crucial role in clinical diagnostics by en-
abling precise delineation of anatomical structures such as organs, tumors, and
lesions. Early deep learning-based segmentation architectures focus primarily on
2D CNNs, with UNet [23] introducing an encoder-decoder paradigm that re-
tains spatial information through skip connections. This architecture inspired
various refinements, including UNet++ [31] and AttnUNet [14], which incorpo-
rate dense connectivity and attention mechanisms to improve feature extraction.
To address the limited receptive fields of CNNs, Transformer-based 2D architec-
tures such as SwinUNet [2], MedT [26], and MISSFormer [9] use self-attention
to capture long-range dependencies. Hybrid approaches such as TransUNet [3],
EMCAD [22], CASCADE [18], G-CASCADE [20], and MERIT [19] combine
Transformer-based encoders with CNN- or GNN-based decoders to balance the

https://github.com/SLDGroup/EfficientMedNeXt
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local and global feature extraction. However, despite these advances, all 2D seg-
mentation models inherently suffer from volumetric inconsistency, as they pro-
cess slices independently and ignore the inter-slice relationships.

To overcome these limitations, 3D segmentation architectures analyze entire
volumetric scans holistically using one of three approaches: fully Transformer-
based methods, hybrid Transformer-CNN designs, or architectures based solely
on convolutional networks. nnUNet [10] automates training configurations based
on the dataset characteristics. UNETR [6] integrates Vision Transformers (ViTs)
[4] encoder for long-range dependency modeling with a conventional CNN de-
coder. Hybrid Transformer-CNN architectures such as SwinUNETR [5] and Swi-
nUNETRv2 [7] apply shifted window attention to the encoder and 3D residual
convolutions to the decoder. TransBTS [27] combines self-attention encoding
with convolutional decoding, while UNeSt [29] enhances local spatial communi-
cation via hierarchical patch aggregation. Despite their performance gains, these
models still demand substantial GPU resources for inference.

Fully convolutional models like MedNeXt [24] and 3D UX-Net [12] repli-
cate large receptive fields using large-kernel depthwise convolutions. However,
MedNeXt and 3D UX-Net rely on fixed single-scale receptive fields, inefficient
convolutional block design, redundant high-resolution decoder layers, and exces-
sive channels in the decoder, thus leading to excessive computational cost and
memory consumption with suboptimal performance.

To address efficiency, recent models target lightweight designs. UNETR++
[25] introduces paired attention for efficiency, while SegFormer3D [17] uses an
all-MLP decoder to reduce computations. SlimUNETR [15] prunes channels and
attention blocks to improve speed and reduce memory footprint. EffiDec3D [21]
further optimizes architecture by eliminating high-resolution decoder stages and
unifying the reduced decoder channel counts across stages.

Despite advances in both heavy and lightweight models, few architectures
strike an optimal balance between segmentation accuracy and real-time effi-
ciency. Heavy approaches deliver strong performance, but are impractical for
deployment due to high computational and memory demands, while lightweight
variants often sacrifice accuracy. An ideal model, therefore, should seamlessly in-
tegrate multi-scale spatial information, capturing both global context and local
detail, without relying on large kernels or self-attention. It should eliminate re-
dundant computations in the decoder, reducing memory footprint and inference
cost, and be architecturally lean, thus enabling real-time processing on clinical
hardware. Crucially, this requires a carefully designed core convolutional block
that balances receptive field flexibility and computational efficiency.

We introduce EfficientMedNeXt, a segmentation architecture designed to
overcome these challenges. Developed through a two-phase architectural opti-
mization of MedNeXt [24], EfficientMedNeXt delivers high performance while
dramatically reducing computational complexity. Our design enables effective
multi-scale spatial learning while maintaining computational efficiency. Our main
contributions are as follows:
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1. New Efficient Architecture: We introduce EfficientMedNeXt, a new seg-
mentation architecture that effectively balances efficiency and segmentation
performance by leveraging architectural optimizations that reduce compu-
tational cost while maintaining strong feature representation.

2. Dilated Multi-Receptive Field Block: We introduce a new convolu-
tional block that replaces the traditional depthwise convolutions with multi-
receptive dilated depthwise convolutions and removes channel expansion con-
volutions, thus allowing for efficient receptive field expansion without increas-
ing kernel sizes. Using multi-receptive dilation-based spatial aggregation, our
model adaptively captures both smaller and larger contextual features, thus
improving segmentation accuracy while keeping computational costs low.

3. Two-Phase Architecture Optimization: We present a two-phase archi-
tecture optimization strategy that first reduces the MedNeXt’s decoder com-
plexity by unifying decoder channels across all stages and removing redun-
dant high-resolution layers, leading to a 72.7% parameters and 53.9% FLOPs
reduction with only a minor (-0.38%) DICE score drop. In the second phase,
we restore the DICE score by +1.42% with additional computational savings
through adaptive multi-scale receptive field aggregation, ensuring an optimal
balance between computational efficiency and segmentation performance.

The rest of this paper is organized as follows. Section 2 details our architec-
ture, EfficientMedNeXt. Section 3 describes the experimental setup. Section 4
presents our experimental results. Section 5 summarizes our contributions.

2 Method

2.1 Dilated Multi-Receptive Field Block (DMRFB)

The existing MedNeXt block [24] (Fig. 1c) utilizes a large-kernel depthwise con-
volution (DWC) followed by a 1 × 1 convolution for channel expansion with a
scaling factor R, before projecting to the output channels. This design captures
the single-scale spatial context but relies on channel expansion convolutions,
which contribute significantly to computational costs.

To address these inefficiencies, we introduce the Dilated Multi-Receptive
Field Block (DMRFB), which removes the expansion convolution while en-
hancing receptive field diversity through parallel dilated depthwise convolutions.
As shown in Fig. 1b, DMRFB replaces the single large-kernel DWC with three
parallel depthwise convolutions: (1) a 1 × 1 convolution for local feature ex-
traction, (2) a 3 × 3 depthwise convolution with dilation D = 1 for mid-range
receptive fields, and (3) a 3 × 3 depthwise convolution with dilation D = 2 for
larger spatial contexts. The outputs from these branches are concatenated and
processed by the Group Normalization (GN) [28] as in Eq. 1:

Y = σ
(
GN

(
Concat

(
DWC1×1,S(X),DWC3×3,D=1,S(X),DWC3×3,D=2,S(X)

)))
(1)

DMRFB(X) = Conv1×1 (Y ) +

{
X, if Cin = Cout,

Conv1×1(X), otherwise.
(2)
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Fig. 1. Our new architecture and components. (a) Our U-shaped EfficientMedNeXt
architecture, (b) Our new Dilated Multi-receptive Field Block (DMRFB), and (c) Ex-
isting MedNeXt block [24]. Our new Residual Path, down convolution block (Down
Block), and up convolution block (Up Block) are based on our DMRFB block. The
layer marked ✗ is not used in our DMRFB, thus reducing computational cost. O1, O2,
O3, O4, and O5 are output segmentation maps from different stages of our network.

where σ(·) represents the GELU [8] activation and S is the stride. Afterward, a
1 × 1 convolution projects the features onto the output channels Cout. A final
1× 1 convolution is used in residual connection if Cin ̸= Cout as in Eq. 2.

Compared to the MedNeXt block [24], our DMRFB introduces two key op-
timizations: (1) removing expansion convolutions, thus reducing #FLOPs and
#Params and (2) multi-receptive convolutions, thus capturing multi-scale spatial
context without increasing kernel sizes. These modifications enable EfficientMed-
NeXt to achieve higher segmentation performance with fewer computations.

2.2 EfficientMedNeXt: New Efficient Encoder-Decoder Architecture

As shown in Fig. 1a, EfficientMedNeXt follows an encoder-decoder structure, in-
corporating a stem layer, an encoder with downsampling, a bottleneck, a decoder
with upsampling, and residual paths for skip connection refinement.

Stem Layer. An initial stem layer applies a 1× 1 convolution to project the
input image I ∈ RCin×H×W×D to a base feature map with C channels.

Encoder. Each encoder stage l ∈ {1, 2, 3, 4} consists of Bl stacked DMRFB
blocks followed by downsampling using DMRFB with stride 2, which integrates
strided depthwise convolutions to reduce spatial resolution while preserving re-
ceptive field expansion. Given an input feature map Xl ∈ RCl×Hl×Wl×Dl at stage
l, the encoder operations are defined as Xl+1 = DMRFBS=2(DMRFBBl(Xl)),
where DMRFBS=2 applies stride-2 depthwise convolutions for downsampling.

Residual Path for Skip Feature Refinement and Uniform Channel Control. In-
stead of directly passing the encoder features to the decoder via skip connections,
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we refine them using a DMRFB block. This serves two key objectives: (1) enhanc-
ing feature representation and (2) ensuring that all skip connection features have
uniform channel dimensions before aggregation in the decoder. The refined skip
features Xl

skip at each stage l are computed as Xl
skip = DMRFB(Xl, Cl

dec),
where Cl

dec ensures that the number of channels in the refined skip features
matches the uniform reduced channel dimension of the decoder.

Bottleneck. Before feeding the encoded high-level features (X5) to the de-
coder, a bottleneck stage adjusts the number of channels to the decoder’s reduced
uniform channels using a DMRFB block followed by a series of B5 stacked DM-
RFB blocks for feature refinement as Xb = DMRFBB5(DMRFB(X5, C5

dec)).
Decoder. The decoder takes the refined features by the bottleneck layer. Then

each decoder stage l ∈ {4, 3, 2, 1} reconstructs feature maps progressively, using
DMRFB with stride 2 and transposed depthwise convolutions for upsampling, fol-
lowed by Bl stacked DMRFB blocks for refinement. Given an input feature map
from the previous stage Xl+1

dec ∈ RCl+1×Hl+1×Wl+1×Dl+1 , the upsampling and re-
finement process is defined as Xl

dec = DMRFBBl(Xl
skip+DMRFBtrans

S=2 (Xl+1
dec )),

where DMRFBtrans
S=2 applies stride-2 transposed dilated depthwise convolutions.

Multi-Resolution Deep Supervision. To improve optimization and gradient
flow, we apply deep supervision by generating segmentation outputs at all five
decoder stages using SH. The total loss is calculated as Ltotal =

∑4
i=0 λiL(Oi, G),

where Oi represents the segmentation prediction from decoder stage i, G is the
groundtruth, and λi = 1 is the supervision weight at each stage.

Segmentation Output Selection. During inference, we optimize computational
efficiency by selecting the segmentation output from either the final decoder stage
(O1) or the second-to-last decoder stage (O2), depending on the removal of the
high-resolution layer (H ×W ×D). This balances accuracy and computational
cost, thus making EfficientMedNeXt adaptable to various deployment scenarios.

2.3 Decoder Optimization and Global Network Scaling

Decoder Optimization. Conventional decoders suffer from redundant computa-
tions due to excessive channel dimensions and high-resolution processing [21].
Inspired by EffiDec3D [21], we use uniform decoder channels (UDC), aligning
all decoder channels with the lowest encoder stage to maintain uniformity as
Cl

dec = min(αCmin, Cmax), where Cmin = min(C1
enc, . . . , C

5
enc) ensures minimal

redundancy, α = 1 scales decoder width, and Cmax prevents excessive growth. In
addition, we employ high-resolution decoder stage removal (HRR) of (H×W×D)
due to having higher computational overhead with minimal performance gain,
thus significantly reducing computation while preserving segmentation accuracy.

Base Channel Scaling (BCS). We also scale the global base number of chan-
nels in our EfficientMedNeXt network, starting from the stem layer. The lower
values of base #channels (16) optimize efficiency, and the larger values (32) im-
prove the representation ability. However, the performance gain with larger base
#channels is not always proportional to the computational overhead. Therefore,
we introduce two network variants with 16 and 32 base #channels.
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3 Experimental Setup

3.1 Datasets

To evaluate the performance of EfficientMedNeXt, we conduct experiments on
multiple medical segmentation datasets. FeTA [16] consists of 80 T2-weighted
infant brain MRIs with annotations for seven distinct tissue types. We randomly
split the dataset into 64 training, 8 validation, and 8 testing scans. BTCV [11]
includes 30 abdominal CT scans with annotations for 13 organs. Following [3], we
train on 18 scans, validate on 12, and perform 8-organ and 13-organ segmenta-
tion. From MSD [1], we use Brain Tumor, Heart, and Lung segmentation tasks,
applying an 80:20 train-validation split. See EffiDec3D [21] for more details.

3.2 Implementation Details

Our EfficientMedNeXt is implemented using PyTorch and MONAI (https://
monai.io/), with experiments conducted on NVIDIA RTX 6000 (Ada) GPUs
with 48GB memory. The input patch size is 96 × 96 × 96, with two cropped
sub-volumes for all datasets, except for BTCV. We adopt preprocessing and
data augmentation from 3D UX-Net [12] and EffiDec3D [21], including random
cropping, flipping, rotation, and intensity normalization.

For loss calculation, we use a combination of DICE and cross-entropy losses.
Deep supervision is applied across five decoder stages, and during inference, the
output is selected based on network variant for an optimal trade-off between ac-
curacy and efficiency. Softmax activation with Argmax is applied to decoder out-
puts, except for Task01_BrainTumor, which uses Sigmoid with a 0.5 threshold
for multi-level segmentation. Segmentation performance is primarily evaluated
using the DICE score, with the 95% Hausdorff Distance (HD95) additionally
reported for BTCV 8-organ segmentation.

Training uses the AdamW optimizer [13] with a weight decay of 0.08 and a
base learning rate 1× 10−3 for all datasets. Models are trained for 45,000 steps,
except Task01_BrainTumor, which undergoes 60,000 steps. The best model is
selected based on validation DICE scores.

4 Results

4.1 Architecture Optimization and Component Ablation

Table 1 analyzes the architectural refinements of MedNeXt to balance preci-
sion and efficiency. Starting from baseline MedNeXt-L_K5 (62.99M #Params,
251.09G FLOPs), we systematically cut down computational overhead: our HRR
reduces FLOPs by 21% (197.62G) with <0.3% DICE loss, UDC slashes param-
eters by 72.7% (17.19M) and FLOPs by 53.9% (115.84G), doubling throughput,
while DMRFB boosts accuracy (86.06% DICE, 4.62 HD95) via multiple recep-
tive fields. The final BCS scaling (base channels=16) yields EfficientMedNeXt-S:
98.5% fewer #Params (0.92M) and 95% fewer FLOPs (12.46G) vs. baseline, with
85.84% DICE and a 78.1% throughput gain (50.26/s) at -0.12% DICE loss.

https://monai.io/
https://monai.io/
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Configurations BCS HRR UDC DMRFB #Params↓ #FLOPs↓ Thrgh. (/s)↑ %DICE↑ HD95↓

MedNeXt-L_K5 32 No No No 62.99M 251.09 11.01 85.96 5.48
+ HRR 32 Yes No No 62.93M 197.62G 20.99 85.67 5.59
+ UDC 32 Yes Yes No 17.19M 115.84G 26.35 85.58 5.61
+ Our DMRFB 32 Yes Yes Yes 3.31M 38.35G 27.94 86.06 4.62
+ BCS 16 Yes Yes Yes (-98.5%)0.92M (-95%)12.46G (+78.1%)50.26 85.84 5.34

Table 1. Results of architecture optimization and new components on BTCV 8-organ
segmentation. FLOPs are measured for a 963 one-channel input with 9 output classes.
Applying Base Channel Scaling (BCS) results in our optimized architecture termed
EfficientMedNeXt-S. The computational improvements are shown compared to baseline
MedNeXt-L_K5 [24]. Note: High Resolution decoder stage Removal (HRR), Uniform
Decoder Channels (UDC), Throughput (Thrgh).

Network Variants #DMRFB (Bi) HRR BCS #Params #FLOPs Thrgh. (/s) DICE (%) HD95

EfficientMedNeXt-T [2,2,2,2,2,2,2,2,2] Yes 16 0.43M 7.09G 80.00 84.51 7.97
EfficientMedNeXt-S [3,4,8,8,8,8,8,4,3] Yes 16 0.92M 12.46G 50.26 85.84 5.34
EfficientMedNeXt-M [3,4,4,4,4,4,4,4,3] Yes 32 2.17M 33.34G 29.46 86.59 6.98
EfficientMedNeXt-L [3,4,4,4,4,4,4,4,3] No 32 2.19M 57.68G 13.58 87.00 4.45

Table 2. Performance comparison of EfficientMedNeXt variants across architectural
configurations (#DMRFB blocks (Bi), High-Resolution Removal (HRR), and Base
Channel Scaling (BCS)) on BTCV 8-organ segmentation. Note: Throughput (Thrgh).

4.2 Architecture Variants Ablation

The architectural and performance trade-offs of the EfficientMedNeXt variants
are summarized in Table 2. As shown, the small variant (EfficientMedNeXt-
S) strikes a balance, achieving competitive accuracy (DICE: 85.84%, HD95:
5.34) with moderate FLOPs (12.46G) and throughput (50.26/s). Scaling to
EfficientMedNeXt-L with HRR and BCS=32 improves DICE to 87.00% and
reduces HD95 to 4.45 with a higher #Params (2.19M) and #FLOPs (57.68G).

4.3 Segmentation Results Comparison with SOTA Methods

Table 3 shows that EfficientMedNeXt-L achieves state-of-the-art (SOTA) DICE
scores on five datasets (BTCV13, BTCV8, BraT, Lung, Heart), outperforming
SwinUNETRv2 (+2.03% BTCV13), MedNeXt-L_K5 (+3.1% Lung), and nn-
Former (+7.52% Lung) with at least 28.8× fewer #Params (2.19M vs. 62.99M).
EfficientMedNeXt-S surpasses UNETR++ on BTCV8 (+3.44%), BraT (+1.35%),
and FeTA (+0.75%) using 46.3× fewer #Params. EfficientMedNeXt-T domi-
nates ultra-light models, achieving 77.15% Lung DICE (+22.08% SegFormer3D,
+9.49% SlimUNETR) with only 0.43M parameters (10.5× lighter than Seg-
Former3D). These results establish a new Pareto frontier, unifying clinical-grade
precision (83.29 – 92.98% DICE) with deployability (0.43 – 2.19M #Params, 7.09
– 57.68G FLOPs), resolving the efficiency-accuracy trade-off in medical imaging.

4.4 Qualitative Results Comparison with SOTA Methods

Fig. 2 shows the superior anatomical fidelity of EfficientMedNeXt-L against lead-
ing methods on two representative BTCV CT slices. Fig. 2a highlights incorrect
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Architecture Params FLOPs Inf. Time Mem. Thrgh. Avg. DICE (%)↑

(M)↓ (G)↓ (ms)↓ (GB)↓ (/s)↑ BTCV13 BTCV8 FeTA BraT Lung Heart
UNETR [6] 92.78 82.70 11.56 0.77 86.49 74.96 81.97 84.19 75.69 65.38 91.42
nnFormer [30] 149.32 273.41 20.17 0.94 49.58 78.28 84.56 87.03 74.79 69.79 92.21
TransBTS [27] 31.58 110.66 14.49 0.51 69.01 78.87 83.67 87.18 77.82 63.57 90.12
SwinUNETR [5] 62.19 329.20 47.98 1.51 20.84 80.13 84.42 86.71 79.06 65.12 91.92
SwinUNETRv2 [7] 80.73 356.74 49.60 1.59 20.16 81.26 85.67 87.29 78.78 73.52 91.96
UNETR++ [25] 42.62 53.99 26.69 0.50 37.47 80.49 82.40 86.72 77.16 76.09 92.39
SegFormer3D [17] 4.50 5.03 3.93 0.17 254.42 74.34 81.66 86.57 73.85 55.07 91.64
SlimUNETR [15] 1.79 20.17 8.90 0.12 112.37 72.56 80.42 82.70 72.66 67.66 90.42
nnUNet [10] 31.78 417.96 23.97 1.29 41.72 77.82 82.11 84.57 74.37 53.14 91.89
3D UX-Net [12] 53.01 632.25 48.11 1.44 20.79 79.74 85.33 87.28 78.58 71.46 92.03
MedNeXt-S_K3 [24] 5.55 60.48 35.58 1.21 28.11 81.38 85.21 87.12 78.50 72.86 92.32
MedNeXt-L_K5 [24] 62.99 251.09 90.84 1.83 11.01 81.94 85.96 87.21 78.81 74.21 92.43
EfficientMedNeXt-T (Ours) 0.43 7.09 12.50 0.58 80.00 79.95 84.51 87.86 78.12 77.15 92.32
EfficientMedNeXt-S (Ours) 0.92 12.46 12.90 0.59 50.26 81.28 85.84 87.47 78.51 76.13 92.68
EfficientMedNeXt-M (Ours) 2.17 33.34 33.94 1.17 29.46 82.44 86.59 87.56 79.12 75.58 92.81
EfficientMedNeXt-L (Ours) 2.19 57.68 73.62 1.40 13.58 83.29 87.00 87.68 79.21 77.31 92.98

Table 3. Experimental results comparison of SOTA methods: Params (M), FLOPs
(G), Inference Time (Inf. Time (ms)), GPU Memory (Mem. (GB)), and Throughput
(Thrgh. (/s)) on BTCV13, BTCV8, FeTA, MSD Task01 Brain Tumour (BraT), Task06
Lung (Lung), and Task02 Heart (Heart) datasets. We retrained all 12 baseline models
using their published architectures under the publicly available training framework and
protocol from 3D UX-Net [12] (see their Appendix A.1, Table 4, GitHub) and EffiDec3D
[21] (see their Supplementary Table S1). This setup ensures fair architecture-level com-
parisons without framework-specific advantages. We manually tuned all hyperparam-
eters (e.g., learning rates) per each baseline’s original guidelines for optimal results.
We evaluated the 3D Generic_UNet (base=48) from nnUNet v1, without its adaptive
pre/post-processing in order to maintain a uniform pipeline and compare only the ar-
chitecture contribution. The Inf. Time and Thrgh. are reported for only the forward
pass of a 96 × 96 × 96 input averaging over 200 iterations on a NVIDIA RTX 6000
(Ada) GPU with 48GB memory. Mem. is the allocated peak GPU memory by Pytorch
during the forward pass. The DICE scores (%) are reported averaging over five runs,
thus having 0.5-3.5% standard deviations across datasets. Best values are in bold.

Fig. 2. Qualitative results of 13-organ segmentation on BTCV dataset. The dashed
white box highlights incorrect predictions by most methods, including ours. Note: BG:
background, RKid: right kidney, LKid: left kidney, Gall: gallbladder, Eso: esophagus,
Sto: stomach, IVC: inferior vena cava, Veins: portal and splenic veins, Pan: pancreas,
Lad: left adrenal glands, Rad: right adrenal glands.

vein segmentation (white box) in all SOTA methods except our EfficientMedNeXt-
L. Our model also achieves pixel-level precision for small structures (gallbladder,
Lad, pancreas) and complex interfaces (IVC, veins), avoiding over-segmentation
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artifacts seen in UNETR, nnFormer and 3D UX-Net. In Fig. 2b, only CNN-based
architectures (3D UX-Net, MedNeXt-L_K5, our EfficientMedNeXt-L) segment
the esophagus (white box), a critical yet frequently missed structure for radio-
therapy planning. Our method uniquely balances holistic precision (e.g., stom-
ach/aorta) with sub-millimeter boundary alignment (liver, kidneys), thus resolv-
ing persistent clinical workflow bottlenecks.

5 Conclusion

We have introduced EfficientMedNeXt, a computationally efficient segmentation
architecture that balances segmentation performance and efficiency through Di-
lated Multi-Receptive Field Blocks (DMRFBs) and decoder optimization. Ex-
tensive experiments on BTCV, FeTA, and MSD BrainTumour, MSD Heart, and
MSD Lung confirm its superiority over prior CNN- and Transformer-based mod-
els. With multiple network variants, EfficientMedNeXt offers scalable solutions
for real-time and resource-constrained medical imaging.
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