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Abstract. Delays in processing urgent cancer referrals hinder Faster
Diagnostic Standards (FDS), with manual extraction of patient data
(demographics, symptoms and test results) remaining a bottleneck in
colorectal two-week wait (2WW) pathways. We evaluate generative Al
(GenAlI) for automating structured data extraction from colorectal can-
cer (CRC) 2WW referrals, comparing the reasoning capabilities of GPT-
40-Mini and DeepSeek-R1 against clinician-led extraction. Both mod-
els achieved near-human precision (GPT-40-Mini: 94.83%, DeepSeek-R1:
93.72%) while reducing the processing time by 10-fold. Key challenges
included non-deterministic output, OCR noise (e.g. handwritten annota-
tions, overlapping text), and contextual ambiguity, notably misclassified
checkboxes, symptom misattribution, and numerical inconsistencies (e.g.
fecal immunochemical test (FIT) unit conversions). We also proposed an
uncertainty quantification mechanism to flag uncertain extractions for
human review. Despite residual limitations, GenAl shows the potential
to improve efficiency, standardisation, and equity in cancer pathways by
alleviating administrative burdens. Future work should prioritise hybrid
Al-clinician workflows, domain-specific fine-tuning, and real-world vali-
dation to ensure reliable clinical integration.

Keywords: Generative Al - Colorectal Cancer - Urgent Referrals - Faster
Diagnostic Standard - Large Language Models

1 Introduction

Rapid processing of urgent cancer referrals is critical for early diagnosis under
the NHS Faster Diagnostic Standards (FDS), yet systemic inefliciencies persist in
real-world practice. General practitioners (GPs) submit suspected cancer cases
via the Electronic Referral Service (e-RS), but interoperability gaps between
primary and secondary care systems require clinicians to manually extract data
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from referrals—a process prone to delays, human error, and variability due to in-
consistent form structures, missing fields, and ambiguous terminology [5]. These
bottlenecks exacerbate the risks of delayed diagnoses [3]. Robust automated tools
to parse referral data to streamline diagnostic pathways are vital [19].

The heterogeneity of CRC 2WW referrals complicates automated extraction.
Critical data fields—such as fecal immunochemical test (FIT) results, hemoglobin
values, and symptoms—are often missing, inconsistently labeled (e.g., “weight
loss” vs. “unintentional weight drop”), or embedded in non-machine-readable
formats like handwritten annotations or checkboxes [I0]. Semantic ambiguities
arise when key details (e.g., rectal bleeding) are inferred rather than explicitly
entered, while redundant or conflicting FIT values risk misinterpretation. Unit
inconsistencies (e.g., g/L vs. g/dL) and unstructured free-text narratives ne-
cessitate manual reconciliation, diverting clinician time. Embedded images in
form headers or logos further degrade OCR performance [I3]. These barriers
underscore the urgent need for Al-driven solutions capable of contextual disam-
biguation to reliably and rapidly parse semi-structured referrals at scale.

Current approaches to automate referral processing—rule-driven heuristics or
traditional machine learning—struggle with the variability of CRC 2WW refer-
rals [I8]. Large language models (LLMs) like GPT, DeepSeek, and BERT-based
architectures demonstrate transformative potential, achieving clinician-level pre-
cision in structured data extraction (e.g., >98% accuracy in retrieval-augmented
workflows [7]) and outperforming expert systems in tasks like negation detection
from unstructured data [2]. While proprietary models marginally surpass open-
source alternatives in domain-specific performance [20], both enable scalable
digital technologies. Key challenges remain: LLM opacity complicates clinical
validation, high computational costs hinder adoption, and biased or hallucinated
outputs—clinically unsound responses lacking evidence—compromise reliability
despite adaptive prompt tuning [IT]. Robust evaluation frameworks are essential
to address these concerns before clinical deployment.

This study evaluates the in silico efficacy of GPT-40-Mini and DeepSeek-
R1—state-of-the-art reasoning LLMs—in automating data extraction from semi-
structured colorectal cancer (CRC) 2WW referrals. The objectives of our study
include (1) comparing the performance of LLM in analysing complex referrals,
(2) benchmarking AI accuracy and efficiency against manual extraction from
clinicians, and (3) integrating risk-aware assurance by design to ensure robust-
ness for clinical deployment. CRC serves as an example due to its diagnostic
burden: Only 50% of 2WW cases meet the NHS 28-day FDS target, with 90%
not having cancer, underscoring the need for efficient prioritisation [6/8]. Our
pipeline simulates real-world triage by processing referrals via LLMs, iteratively
resolving ambiguities (e.g., conflicting FIT values, implicit symptoms) through
clinician feedback. Methodologically, we quantify time savings and error reduc-
tion against manual workflows, to reduce delays. The novelty lies in the com-
parison of LLM for CRC 2WW referrals and scalable human-AI collaboration,
critical to clinical trust. Early results indicate a 10-fold reduction in processing
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Fig. 1: Clinical workflow comparison. Top: manual CRC referral processing
involves delays due to ambiguous documentation. Bottom: RAPTOR automates
extraction via OCR and LLMs, flagging low-confidence fields for review.

time, demonstrating how LLM can augment (not replace) clinician judgment to
accelerate pathways without compromising safety (Figure [1]).

2 Material and Methods

We used a synthetic data set replicating real-world CRC 2WW referral work-
flows, carefully designed by clinical domain experts and without confidential
patient data. Ethical approval is not necessary for synthetic data analysis, per
institutional and local governance guidelines, and compliance was verified with
the Health Research Authority decision toolE| The study was registered as a ser-
vice improvement project with University Hospitals Birmingham (UHB) Cancer
Services.

2.1 CRC Referrals Dataset Generation

A synthetic dataset was created to replicate CRC 2WW referral workflows,
designed by clinicians with over five years of post-GMC registration experi-
ence. To capture real-world variability, the dataset was segmented into high-
, intermediate-, and low-risk CRC likelihood categories. Referrals included di-
verse data entry scenarios such as typed and handwritten text, checkboxes, and
overridden values—to capture documentation variability. A structured parsing
approach then categorized referrals into the following categories:

1. Patient Details:
— Demographics (age, sex, NHS number)
— Red flag symptoms (rectal bleeding, bowel habit changes, weight loss)
— Diagnostic tests (FIT, hemoglobin, MCV, ferritin, TTG, renal function)
— Medical history (comorbidities, medications, smoking/alcohol status)
— WHO performance status
2. GP Details:
— Clinician/practice identifiers
— Referral metadata (date, priority, declarations)

The referrals were converted to PDFs and stored in version-controlled repos-
itory.

! https://www.hra-decisiontools.org.uk /research /
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2.2 LLM Selection, OCR Adaptation, and Prompt Tuning

We selected two models (i.e., GPT-40-Mini and DeepSeek-R1) for automated
extraction of structured JSON from semi-structured CRC 2WW referral PDFs.
These models were chosen for their strong clinical document performance, fast
inference, and accessible deployment. Both models, accessed in their public ver-
sions (January 2025), were tested in zero-shot mode to assess their generalis-
ability without domain-specific fine-tuning. Initial OCR attempts with Tesseract
and multimodal LLMs struggled with checkbox states, strikethroughs, and hand-
written annotations.We fine-tuned Google Document AT on 200 synthetic CRC
referrals simulating NHS artifacts (e.g., handwriting, occlusion). Fifteen fields
were annotated on 300 DPI grayscale images. A 70:30 train:test split (stratified
by CRC risk) was used to evaluate OCR performance. AutoML Vision OCR (6
epochs, batch size 4, Ir 3e-5) achieved 90.5% F1 (93.5% precision, 87.8% recall).
Full setup is detailed in the GitHuHﬂ We employed a structured pipeline for
data extraction as described below:

1. OCR Processing: Fine-tuned Document Al extracts text from referrals.

2. Pre-processing: Data cleaning, validation, and normalisation.

3. Zero-shot LLM Reasoning: GPT-40-Mini or DeepSeek-R1 generate JSON
using tailored prompts to handle complex data without hallucination.

4. Output Structuring: Final JSON data stored for clinical decision support.

The extraction prompt was iteratively refined to improve precision and adapt-
ability. Key optimisations included hierarchical data grouping (symptoms, tests,
medical history), dynamic unit-of-measure mapping for generalisability, manda-
tory field enforcement with null placeholders, error-resistant unit of measurement
(UOM) normalisation, and hallucination controls to restrict outputs to referral-
derived content. The final prompt was designed as a domain-agnostic framework
compliant with clinical standards, adaptable to various oncology referrals.

2.3 Evaluation of LLMs and Risk Assessment

Model outputs (GPT-40-Mini and DeepSeek-R1) were compared to the validated
ground truth of clinicians. Accuracy was defined as the percentage of referrals in
which LLM outputs matched expert-extracted data. Discrepancies were blindly
reviewed by two CRC triage consultants to distinguish true errors from clinically
acceptable variations, focusing on misinterpretations (e.g., symptom misattribu-
tion, numerical inconsistencies) and structured field misclassifications. The find-
ings informed refinements to improve clinical relevance. The NHS Al Quality
Community of Practice (AIQCoP) assessed risks per NHS standards, focusing
on clinical safety and workflow integration. Key risks—OCR noise, misclassifi-
cation, and model interpretability—were mitigated through safeguards like hu-
man oversight for ambiguities. Administrative impacts, including prioritisation
biases, were also addressed. This ensured Al outputs met NHS reliability stan-
dards while balancing automation with diagnostic safety. Statistical analyses

2 lhttps://github.com/bilalcodehub /swiftcare-ai
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were performed using Python. Descriptive statistics included counts, percent-
ages, and ranges to summarise data distributions (e.g., symptom prevalence,
test results) and model accuracy rates.

3 Results

Analysis of 111 synthetic CRC referrals (Table revealed a median age of
64.5 years (range 21-125), near-equal gender distribution (52.25% male), and
predominant rectal bleeding (53.15%), weight loss (25.23%), and iron deficiency
anemia (IDA, 45.05%). Lab heterogeneity included widely varying FIT scores
(median 9 pg/g, range 2-400) and documentation errors (e.g., Hb: 119.0 g/dL).
Most patients (77.4%) were triaged via urgent Straight-to-Test pathways.
Referrals were classified into low (41.4%), intermediate (6.3%), and high
(52.3%) CRC risk groups.
Table 1: Clinical and Demographic Characteristics of CRC Referrals

(A) Demographics/ WHO Status

(B) Presenting Symptoms

Characteristic Value

Age, years (Range) 64.5 [21-125]

Gender Male 52%
Female 48%
Ethnicity 86% Caucasian

Others <8% each
54%, 23%, 7%,
11%, 5%

WHO Score 04

(C) Medical History & Lifestyle

Symptom n (%)

Rectal Bleeding 59 (53%)
IDA 50 (45%)
Weight Loss 28 (25%)

Abd/Rectal Mass 30 (combined)
Other Symptoms <10% each

Abbreviations: Abd = Abdominal Pain; IDA
= Iron Deficiency Anemia;

(D) Labs and Risk Pathways

Test Panel Values (Range)

Hematology Hb: 73 [55-150], MCV: 3
|50-67], Ferritin: 42 [4-6]
Urea: 16 [3-6], Creatinine: 16

Variable

n (%)
Consultation Recorded 111 (100%)

Renal Function

Smoking Status 50 (45%) [44-67], eGFR: 16 [90]
Allergies Reported 49 (44%) Other Markers FI‘I;I]‘:OO]MO [2-400], TTG: 14
Medications Logged 17 (15%) CRC Pathway STT 77%, OPD 23%

Alcohol Intake Missing 101 (91%) Risk Group High 52%, Low 41%, Mid 6%
Abbreviations: FIT = fecal immunochemi-
cal test; STT = straight-to-test; OPD =

outpatient clinic.

The Inter-Observer Variability (IOV) study (Table [2]) revealed GPT-40Mini
achieved near-human accuracy (94.83%) in parsing CRC referrals, surpassing
DeepSeekR1 (93.72%) against expert annotation. Field-level analysis highlights
complementary strengths: DeepSeek outperforms in eGFR (96.40% vs.88.29%)
and last consultation (77.48% vs.74.77%), while GPT-40oMini leads in rectal
bleeding (91.89% vs.61.26%), weight loss (78.38% vs.73.87%), and hemoglobin
(81.98% vs.67.57%). Both excel at structured demographics (e.g., clinic address,
telephone), yet diverge in clinical markers—DeepSeek excels at iron deficiency
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Fig. 2: Tllustration of LLM-powered referral extraction and comparative effi-
ciency.

anaemia (63.96% vs.59.46%) and WHO performance status (91.89% vs.90.09%).
Each parser thus suits different tasks (e.g., DeepSeek for eGFR, GPT-40Mini for
hemoglobin), guiding model selection or ensemble use. While neither replicates
human expertise, GPT-4oMini’s aggregate performance suggests its utility as a
parsing adjunct in resource-limited settings.

Confidence analysis (Table[2) reveals GPT-40Mini’s mean confidence (93.81%)
aligns closely with its actual accuracy (94.83%), indicating generally well-calibrated
self-assessment. Still, specific fields deviate: DeepSeekR1 reports 97% confidence
on FIT tests yet attains 91.89% accuracy, whereas GPT-40Mini shows tighter
confidence-accuracy coupling (88.29% vs.89.19%). DeepSeekR1 achieves near-
perfect agreement in structured fields (e.g., 100% confidence and accuracy for ad-
dresses), but overstates confidence for hemoglobin (76% vs.67.57%) compared to
GPT-40Mini (83.78% vs.81.98%). Both models slightly overestimate confidence
in demographics (e.g., GPT-4oMini at 98.65% vs.98.20% for ethnicity), while
last consultation differs sharply (GPT-4oMini: 74.86% vs.74.77%, DeepSeekRl1:
54%). These patterns suggest GPT-4oMini offers more nuanced confidence es-
timates, whereas DeepSeekR1 exhibits a tighter but occasionally rigid margin.
Figures[2a] and 2b] illustrate automated CRC referral extraction and comparative
extraction times.

ATIQCOoP risk analysis found most system risks mitigated by technical safe-
guards, with residual challenges shaping future assurance. Semi-structured input
constraints limited unexpected scenarios, while OCR fine-tuning addressed edge
cases like strikethroughs or tick elements. Confidence-driven scoring rerouted
ambiguous data to administrative review and flagged for clinician validation.
Unmitigated risks mainly arose from clinical history free-text variability, where
unstructured narratives risked omission or inconsistency despite schema-based
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Table 2: Attribute-Level Performance and Agreement Analysis of GPT-40-Mini
and DeepSeek-R1 in Parsing CRC Referrals

Section Field GPT-40-Mini DeepSeek-R1 Agreement (A/D) (%)
Acc. Conf. Acc. Conf.
Patient Details Address 100.00  99.91 97.30 100.00 100 / 0
Capacity to consent 88.29 88.74 95.50 100.00 93.5 / 6.5
Consent for text 96.40 96.85 96.40 100.00 93.5 / 6.5
Date of birth 99.10  99.55 99.10 100.00 100 / 0
Ethnicity 98.20  98.65 98.20 100.00 100 / O
First language 98.20  98.65 99.10 100.00 100 / 0
Forename 98.20 98.65 98.20 100.00 100 / O
Gender 99.10  60.99 100.00 100.00 100 / 0
Hospital number 98.20 98.65 99.10 100.00 100 / 0
Interpreter required 94.59 95.05 98.20 100.00 100 / 0
Landline number 100.00 100.00 100.00 100.00 100 / 0
Mobile number 100.00  99.91 99.10 100.00 100 / O
Surname 98.20  98.65 99.10 100.00 100 / 0
WHO performance status 90.09  83.69 91.89  88.00 87.9 / 12.1
Symptoms Abdominal Mass 99.10 99.55 100.00 100.00 100 / O
Anal Ulceration 97.30  97.12 100.00 100.00 94.3 / 5.7
Change In Bowel Habit 88.29 84.33 61.26  63.00 63.6 / 36.4
Iron Deficiency Anaemia 59.46 59.82 63.96 71.00 59.7 / 40.3
Rectal Bleeding 91.89 89.91 61.26  63.00 75.4 / 24.6
Rectal Mass 96.40  96.22 98.20 100.00 100 / 0
Weight Loss 78.38  78.11 73.87  82.00 71.1 / 28.9
Medical History Alcohol Intake 99.10 99.55 100.00 100.00 100 / 0
Allergies 99.10  99.01 94.59  99.00 100 / O
Last Consultation 74.77  74.86 77.48  54.00 94.3 / 5.7
Medical Hx 93.69  93.42 90.99  96.00 93.9 / 6.1
Medications 94.59  94.32 93.69  88.00 100 / 0
Smoking Status 99.10  99.55 98.20 100.00 100 / O
Test Results eGFR 88.29  87.93 96.40  97.00 84.7 / 15.3
Ferritin 100.00 100.00 100.00 100.00 100 / O
FIT 88.29  89.19 91.89  97.00 89.6 / 10.4
Hemoglobin (Hb) 81.98  83.78 67.57  76.00 82.3 / 17.7
MCV 99.10  99.28 99.10 100.00 98.1 / 1.9
TTG 99.10  98.56 99.10 100.00 98.1 / 1.9
Urea 99.10  99.19 99.10 100.00 98.1 / 1.9
Creatinine 99.10  99.19 99.10 100.00 98.1 / 1.9
GP Details Clinic address 100.00 100.00 100.00  87.00 100 / 0
Date of decision to refer  99.10 99.64 100.00  78.00 100 / O
Date of referral 99.10 99.64 99.10  78.00 99.1 / 0.9
Email 100.00 100.00 100.00 100.00 100 / 0
Fax number 100.00 100.00 100.00 100.00 100 / 0
GP Name 100.00  100.00 100.00 100.00 100 / 0
Telephone 100.00 100.00 100.00 100.00 100 / 0
Overall - 94.83 93.81 93.72 93.00 94.65 / 7.73

Acc. = Accuracy; Conf. = Confidence; A/D = Agreement / Disagreement with ground truth.

mitigation. Full mitigation requires rigorous testing with synthetically engineered
forms covering the whole range of patient scenarios.

4 Discussion

Our evaluation of LLMs versus human experts in the referrals parsing revealed
that both models achieved near-human accuracy, but exhibited critical limita-
tions in the interpretation of fields requiring vision capabilities in clinical PDFs.
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These vulnerabilities, resulting from inconsistent data capture practices, require
standardised structured input systems for reliable clinical deployment.

While LLMs advance structured data OCRE| they falter at interpreting hand-
written annotations and implicit contextual cues, contrasting traditional OCR’s
printed-text focus [12]. Our analysis reveals critical spatial reasoning failures:
mislinking elevated FIT values without explicit statements, and irreversible error
propagation from glyph-level misinterpretations (handwritten “Y”—“N"). These
limitations mirror EHR extraction challenges [4], where hybrid systems outper-
form pure LLM approaches. Though multimodal architectures like Med-PaLM
M [16] show promise, persistent weaknesses in distinguishing visual semantics
(e.g., v'vs. X) underscore the need for integrated document understanding.

LLM-driven extraction can be deployed in three principal models. Autonomous
systems operate independently but pose risks of critical errors in closed-loop
workflows [I7]. Manual verification ensures human oversight but undermines
automation benefits, reducing efficiency. Assistive systems strike a balance be-
tween efficiency and safety by flagging discrepancies based on uncertainty scores,
allowing clinicians to intervene when necessary.

The hybrid clinician-ATI collaboration approach (assistive systems) enhances
prior methods [I5] by identifying conflicting annotations for rapid resolution, re-
ducing automation bias while preserving human agency [9]. In urgent triage, this
balances algorithmic assistance with clinical oversight [14]. However, as Agar-
wal et al. [I] caution, human-AT collaboration is not always optimal, as cognitive
belief updating biases may prevent clinicians from fully leveraging Al assistance.

Collaboration with NHS England’s AIQCoP identified diverse clinical parsing
risks (non-standard data entry, ambiguous contradictions, data drift), necessitat-
ing assurance-by-design integration. Proactive mitigations—embedding referral
pathway logic for missing data flags, multilayered validation, and dynamic input
monitoring—codified safeguards through fallback protocols and continuous au-
diting, shifting from reactive correction to preemptive risk reduction. While OCR
fine-tuning addressed known limitations, its issue-specificity leaves vulnerability
to unidentified live data challenges. Recommended adaptations combine gener-
alised OCR solutions with semi-structured data advantages: systematic analysis
of real-world inputs to preemptively catalog edge cases. This dual approach
exemplifies how clinically anchored assurance protocols bridge algorithmic effi-
ciency with healthcare’s human complexities, ensuring Al augmentation aligns
with governance while retaining adaptability to emergent real-world variability.

This study evaluates general-purpose LLMs in a zero-shot setting using syn-
thetic CRC 2WW referrals authored by NHS clinicians. While performance on
real-world referrals remains untested, a prospective NHS validation is under-
way. Our current focus is colorectal cancer; future work will assess generalis-
ability across other cancer pathways. Only two LLMs (GPT-40-Mini, DeepSeek-
R1) were evaluated; broader benchmarking with open-source models is planned.
Although zero-shot inference avoids domain-specific supervision, incorporating
few-shot or fine-tuned baselines may yield deeper insights. RAPTOR includes

3 lhttps://github.com/getomni-ai/benchmark
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field-level confidence scoring to guide human oversight, with its real-world impact
on triage accuracy and clinician workload to be assessed during deployment.

5 Conclusion and Future Work

This study demonstrates GPT-40-Mini and DeepSeek-R1 have achieved near-
human accuracy with 10-fold efficiency gains in colorectal cancer (CRC) referral
processing. These models reveal complementary specialisations: GPT-40-Mini
excels in temporal reasoning while DeepSeek-R1 prioritises quantitative symp-
tom data. Critical limitations in nonstandard input interpretation (handwritten
annotations, checkboxes) necessitate our hybrid framework integrating real-time
uncertainty quantification with clinician oversight—detecting low-confidence ex-
tractions (ambiguous fecal immunochemical test values) for prioritised review. In
collaboration with the NHS England AI Quality Community of Practice (AIQ-
CoP), engagement efforts codified assurance protocols to address 29 identified
risks through dynamic monitoring and fallback mechanisms. Future progress re-
quires multimodal architectures combining visual-semantic parsing with domain-
adaptive fine-tuning, enabling Al to accelerate cancer pathways without com-
promising the indispensable role of clinical judgment in high-stakes decisions.
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