
Ambiguous Medical Image Segmentation
Using Diffusion Schrödinger Bridge

Lalith Bharadwaj Baru*1, Kamalaker Dadi1,
Tapabrata Chakraborti*2, Raju S. Bapi1

1International Institute of Information Technology, Hyderabad, India.
2The Alan Turing Institute and University College London, London, UK.
*lalith.baru@research.iiit.ac.in, tchakraborty@turing.ac.uk

Abstract. Accurate segmentation of medical images is challenging due
to unclear lesion boundaries and mask variability. We introduce Seg-
mentation Schödinger Bridge (SSB), the first application of Schödinger
Bridge for ambiguous medical image segmentation, modelling joint image-
mask dynamics to enhance performance. SSB preserves structural in-
tegrity, delineates unclear boundaries without additional guidance, and
maintains diversity using a novel loss function. We further propose the
Diversity Divergence Index (DDDI) to quantify inter-rater variability,
capturing both diversity and consensus. SSB achieves state-of-the-art
performance on LIDC-IDRI, COCA, and RACER (in-house) datasets.
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1 Introduction

Diagnosis, a cornerstone of medicine, heavily depends on individual assessment
strategies. Recent studies highlight the prevalence of misdiagnosis even for com-
mon health conditions [13], emphasizing the importance of reducing diagnostic
errors. Medical image segmentation, crucial in artificial intelligence (AI) en-
abled clinical decision support systems (CDSS), often relies on deterministic
deep learning models that predict only a single mask per image [19]. However,
varying clinician opinions on anomalies [1] result in low diagnostic consensus. In-
corporating multiple expert interpretations improves diagnosis and reduces false
negatives, but clinician time is a costly resource. Deterministic models have ad-
vanced medical image segmentation but often produce suboptimal results due to
their bias toward the most likely hypothesis, while pixel-wise uncertainty mod-
els can yield inconsistent outputs. This necessitates models that capture diverse
expert interpretations, such as the Probabilistic U-Net [12], PhiSeg-Net [4], and
CIDM [17] etc.

Previous work in ambiguous segmentation has explored variational autoen-
coders (VAEs) and Bayesian methods to generate diverse segmentation masks.
Kohl et al. [12] introduced the Probabilistic U-Net, combining a U-Net with a
conditional VAE for multiple hypothesis generation. While effective, it struggles
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with mask diversity and requires significant computational resources. PhiSeg-
Net [4] enhanced diversity using a hierarchical VAE with a U-Net backbone, but
its axis-aligned Gaussian latent space [21] remains restrictive, limiting expres-
siveness in modeling uncertainties. Rahman et al. [17] and Zbinden et al. [26]
both leverage diffusion models based on Gaussian distributions. A core challenge
in ambiguous segmentation is capturing structural lesion features and generat-
ing plausible boundaries. Current diffusion models sample from Gaussian noise,
making it difficult to represent fine-grained lesion structures. Although using
input images as guidance improves CT image representations, it often fails to
preserve detailed lesion characteristics critical for precise segmentation. In this
work we address some of these drawbacks through the following contributions:
- We empirically demonstrate the effectiveness of Schödinger Bridge (SB) in am-
biguous medical image segmentation by introducing Segmentation Schödinger
Bridge (SSB), which adapts the SB framework and outperforms existing bench-
marks on LIDC-IDRI, Stanford COCA, and our in-house RACER datasets.
- To address ambiguity in segmentation, we propose a novel loss function de-
signed to guide the model in handling diverse variations among segmentation
masks. Additionally, we introduce a new metric, the Diversity Divergence Index
(DDDI), which quantifies inter-annotator variability and agreement, capturing
both diversity and consensus among expert annotations.
- Our approach delivers significant improvements across key metrics (GED,
Dmax, CI Score, and DDDI) compared to existing baselines. Moreover, it show-
cases robustness, offering fast sampling rates and reliable segmentation outputs
suitable for real-world applications.

2 Datasets and Setup

Datasets: We use the publicly available LIDC-IDRI dataset [3], comprising of
lung CT scans with lesion segmentations by four radiologists (1084 subjects,
train:test split = 9:1). Additionally, we utilize the Stanford COCA dataset (787
subjects, train:test split = 3:1) with one expert annotations. We also test our
model an in-house dataset RACER with data from 44 subjects and annotations
from 2 experts with demographic and ethnic variations distinct from COCA,
enabling a robust evaluation of model generalization. The evaluation follows the
protocol outlined by Rahman et al. [17].

Evaluation Metrics: The Generalized Energy Distance (GED) is a statis-
tical metric widely used to evaluate generative models in ambiguous medical
image segmentation [23], [12], [4], [17]. However, Rahman et al. [17] identified
shortcomings in GED for capturing both segmentation performance and diver-
sity, introducing complementary metrics such as Collective Intelligence Score
(CI Score), Maximum Dice Matching (Dmax), and Diversity Agreement (DA).
In this work, we employ GED alongside these metrics for a rigorous and holistic
evaluation while highlighting the limitations of DA. To address this, we propose
the DDDI , which provides a more robust quantification of diversity.
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3 Methods

3.1 Score-based Generative Models and Schödinger Bridge

Before introducing Score-based Generative Models (SGMs) and the Schödinger
Bridge (SB), we establish standard notations. Let Xt ∈ Rd be a stochastic
process over continuous time t ∼ U [0, 1], with initial (data) distribution pA and
terminal (mask) distribution pB . The Wiener process and its reverse, based on
Anderson et al. [2], are Wt and W t in Rd, while I ∈ Rd×d is the identity matrix.
The reference path measure P corresponds to the forward SDE dynamics, serving
as a baseline for optimization, while the target path measure Q represents the
optimal transport process constrained by pA (at t = 0) and pB (at t = 1). The
functions Ψ(t, x) and Ψ̂(t, x) solve the forward and backward PDEs, respectively,
defining the drift components that govern SB dynamics.

Score-based Generative Models (SGMs) aim to perturb data across con-
tinuous noise scales using stochastic differential equations (SDEs) and recon-
struct the data distribution via reverse-time SDEs. The reverse process, guided
by the score function, enables transformations between arbitrary distributions
and Gaussians [22]. Given data X0 ∼ pA, the forward SDE perturbs it, while the
reverse SDE reconstructs it using learned scores. Here, the drift and diffusion
coefficients govern the noise and transformation. SGMs employ a U-Net [19] to
parameterize the score function, optimized via a denoising score-matching loss
[25], ensuring sampled distributions closely resemble pA.

Forward SDE: dXt = ft(Xt) dt+
√

βt dWt, X0 ∼ pA,

Reverse SDE: dXt = [ft − βt∇ log p(Xt, t)] dt+
√

βt dW t,

Training Loss: E
[
λ(t)∥ϵθ(Xt, t)− σt∇ log p(Xt, t | X0)∥2

]
,

Sampling SDE: dXt = [f − βtϵθ(t,Xt)] dt+
√
βtdWt, X1 ∼ pB . (1)

Here, ∇ log p(Xt, t | X0) is computed analytically, with σ2
t scaling the regres-

sion target and λ(t) acting as a tunable hyperparameter influencing performance
[10]. This allows SGMs to transform pA into pB through learned scores. How-
ever, SGMs are limited in flexibility, as they primarily transition between image
distributions and Gaussian noise, restricting efficient mapping to arbitrary tar-
get distributions. To overcome this, we explore the Schödinger Bridge approach,
which offers greater adaptability with minimal data manipulation.

SGMs and Schrödinger Bride (SB) The SB framework minimizes the KL
divergence between a reference path measure P and a target path measure Q,
subject to prescribed marginal densities pA (at t = 0) and pB (at t = 1) [16].
The optimization is formulated as minQ∈P (pA,pB) DKL(Q ||P), where P is typ-
ically chosen as the path measure of the forward SDE. The SB framework, as
described in [7], [6], optimally transports pA to pB by solving PDEs for for-
ward and backward drifts. Unlike SGMs, SB introduces non-linear components,
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Fig. 1. Overview of the Segmentation Schrödinger Bridge (SSB) Framework:
The model formulates segmentation as a stochastic transport problem and progressively
maps the input image distribution to the segmentation mask distribution while preserv-
ing structural integrity. Classifier-Free Guidance (CFG) improves control over diversity
and enables the generation of expert-aligned yet varied segmentations. Time-dependent
U-Net parameter optimization and refined residual connections enhance performance.

making it more adaptable to prior data variations. While SB’s stochastic pro-
cesses resemble SGMs, they incorporate additional coupling terms, resulting in
a factorized marginal density. The governing equations are,

SB Forward SDE: dXt = [ft + βt∇ logΨ(Xt, t)] dt+
√

βt dWt,

SB Backward SDE: dXt = [ft − βt∇ log Ψ̂(Xt, t)] dt+
√

βt dW t, (2)

As demonstrated in [16], [7], [6] this framework extends SGMs, with forward-
backward SDEs that resemble those in SGMs but include non-linear drifts (∇ logΨ

and ∇ log Ψ̂) (equation 2) to handle diverse prior data effectively [2], [22].

Optimal Boundary Constraints To address the computational challenges of
nonlinear SBs, linear SDEs are formulated by redesigning the forward and back-
ward drifts to solve the Fokker-Planck equation [18], [15]. These linear SDEs sim-
plify SB coupling constraints, improving computational efficiency and tractabil-
ity. While SBs nonlinear drifts correspond to score functions, sampling requires
parameterizing ∇ log Ψ̂ via a score network. Dirac delta distributions are ap-
plied to further streamline boundary conditions, ensuring efficient convergence
to a target state ν. The resulting equations are formulated as follows,

Linear Forward SDE: dXt = ft(Xt) dt+
√

βt dWt, X0 ∼ Ψ(·, 0),

Linear Backward SDE: dXt = ft(Xt) dt+
√

βt dW t, X1 ∼ Ψ̂(·, 1), (3)

Boundary Condition: pA(·) = δν(·), pB = Ψ(·, 1)Ψ̂(·, 1).

These linear SDEs ensure that the reverse process converges to the Dirac delta
δν(·), allowing efficient computation of the score function ∇ log p(Xt, t | X0 = ν)
for each sample ν. This reformulation balances mathematical rigor with compu-
tational efficiency, making SB scalable and practical for real-world applications.
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3.2 Segmentation Schrödinger Bridge (SSB)

Theoretical insights necessitate learning ∇ log Ψ̂(·) in a tractable manner. We
apply this to ambiguous medical image segmentation by training a diffusion
model that directly maps a given CT image to the lesion. To fully describe
the diffusion process, we follow a structured design strategy [5], detailing the
training, generation (sampling), and objective function.

Training and Generation: Preserving region-of-interest (ROI) boundaries is
crucial in segmentation. Traditional forward diffusion degrades structural image
properties, reducing mask quality. Prior methods like CIMD [17] and CCDM
[26] generate masks by diffusing from Gaussian noise with image feature guid-
ance, but often fail to retain structural lesion details. Inspired by Palette [20],
we introduce a controlled degradation technique that perturbs the image par-
tially, preserving structural integrity. Hence, at each time when controlled noise
is injected, the model traverses different random paths and yields unique vari-
ations in the mask, even though they converge to the same marginals. Further
information about generation and training is provided in Algorithm (1), (2).
Training scalable diffusion models require efficient computation of Xt, which is
intractable using Equation (2) due to nonlinear forward drift and the inability of
linear SDEs (3) to model high-probability regions effectively. To overcome this,
we adopt an analytical posterior formulation from Liu et al. [15]:

q(Xt | X0, X1) = N (Xt;µt(X0, X1), Σt) (4)

Where, µt =
σ̄2
t

σ̄2
t+σ2

t
X0 +

σ2
t

σ̄2
t+σ2

t
X1, Σt =

σ2
t σ̄

2
t

σ̄2
t+σ2

t
· I. This allows direct sampling

of Xt during training from pA(X0) and pB(X1 | X0) without solving nonlinear
diffusion as in prior Schrödinger Bridge (SB) models [24]. During generation,
given only X1 ∼ pB , running a standard diffusion model [22], [10] from X1

recovers the marginal density of SB paths, provided Xϵ,0 approximates X0 well.
Thus, the sampling method in Equation (4) is both tractable and effective in
covering the required regions.

Algorithm 1 Generation of SSB Model
1: Input: Trained network ϵθ, noise schedule

{βt}
2: Output: Generated samples X0

3: procedure Generation(ϵθ, {βt})
4: XN ∼ pB(XN )
5: for t = N, . . . , 1 do
6: Predict Mask: X̂0 via ϵθ(Xt, l, t)
7: Sample Masks [10]:
8: Xt−1 ∼ p(Xt−1|X̂0, Xt)
9: end for

10: Return X0

11: end procedure

Algorithm 2 Training of SSB Model
1: Input: Training data D; U-Net ϵθ, Experts η
2: Output: Trained network ϵθ
3: procedure Training(D, ϵθ)
4: while not converged do
5: t, l ∼ U [0, 1],U [1, η]
6: X0 ∼ pA(X0), X1 ∼ pB(X1|X0)
7: Xt ∼ q(Xt|X0, X1) (ref eq. (4))
8: Optimize [15]: LSSB (ϵθ, l, t)
9: Update ϵθ with GD to min LSSB .

10: end while
11: Return Trained ϵθ
12: end procedure

Loss Function: Our loss function differs from the standard ADM approach
[8] by leveraging Classifier-Free Guidance (CFG) [11]. As outlined in Algorithm
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2, we first determine the number of experts and stochastically sample expert
labels during training. The model then estimates noise in both conditional and
unconditional settings: i) Conditional : ϵθ(xt, y, t) using data-label pairs (x0, y);
ii) Unconditional: ϵθ(xt, t) without label. During sampling, noise is estimated via
linear interpolation ϵ̂ = (1 + ω)ϵθ(xt, y, t) − ωϵθ(xt, t), enabling CFG-based re-
construction of xt−1. This integration ensures diverse yet structurally consistent
segmentations with fine-grained delineation. A key distinction lies in computing
the score function in the loss, formulated for the reverse linear drift in Equation
(3) while incorporating CFG. Given the segmentation focus, we further enhance
precision by integrating a Dice loss, emphasizing fine boundary details to im-
prove segmentation accuracy. The complete loss formulation is provided below,

LSSB = E

[∣∣∣∣∣∣∣∣ϵθ(Xt, l, t)−
(Xt −X0)

σt

∣∣∣∣∣∣∣∣2 − 2γ · ||X0 ∩ ϵθ(Xt, l, t)||
||X0||+ ||ϵθ(Xt, l, t)||

+ γ

]
. (5)

3.3 Diversity Divergence Index

In ambiguous medical image segmentation, a critical objective is to generate
diverse expert-like predictions while capturing inter-annotator variability and
agreement. To quantify both diversity and consensus among expert annotations,
we propose the Diversity Divergence Index (DDDI). The metric is formulated as
follows. Given a model that generates N segmentation masks for an image and M
expert annotations, we compute the Dice score for each generated mask against
each expert, forming an M ×N matrix. Each row, denoted as expert distribution
exp-disti ∈ RM , represents the Dice scores between all generated masks and
the ith expert. Similarly, each column, referred to as the generated distribution
(gen-distj ∈ RM ), captures the Dice scores between a single generated mask and
all expert annotations, reflecting how closely the model’s predictions align with
expert variability.

Next, we compute the Jensen-Shannon (JS) divergence [14] across expert dis-
tributions, measuring the divergence between expert predictions. Finally, Dexp

DDI

aggregates these pairwise divergences, providing a comprehensive measure of
inter-expert variability and Dgen

DDI aggregates these pairwise divergences, pro-
viding a comprehensive measure of inter-mask variability :

Dexp
DDI =

3
MC2

∑
i

∑
j

1[i̸=j]JS(exp-disti, exp-distj) (6)

Dgen
DDI =

3
NC2

∑
i

∑
j

1[i ̸=j]JS(gen-disti, gen-distj) (7)

Here, 1[i ̸=j] is the indicator function, which excludes the same expert com-
parison. This formulation captures both diversity among expert masks and agree-
ment in generated masks, making it a robust metric for evaluating model uncer-
tainty in ambiguous medical image segmentation.
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(a) LIDC (b) COCA (c) Home 

Fig. 2. The first image Fig. 2(a) from LIDC-IDRI [3] shows that Probabilistic U-Net
fails to generate accurate masks, while CIMD aligns with expert annotations but lacks
precise lesion boundaries. CCDM performs suboptimal, whereas SSB achieves fine-
grained boundary delineation while maintaining segmentation diversity. In Fig. 2(b)
from Stanford COCA [9], CIMD fails to capture calcium plaques, and while Prob. U-Net
and CCDM miss very small plaques, and SSB successfully segments all deposits. For
the third image (c) from RACER (in-house), trained only on COCA, SSB generalizes
well, producing diverse yet expert-aligned annotations, unlike other methods that fail
to overlap with experts or provide meaningful variability. In Fig. 2(c) the final output
closely matches the second expert, while the remaining three exhibit controlled diversity

4 Results and Discussion

Table 1 presents a comparative analysis of our proposed SSB variants against
state-of-the-art baseline methods across the LIDC-IDRI, COCA, and Home
datasets. SSB++ extends the capabilities of SSB by incorporating Classifier-
Free Guidance (CFG), enhancing control over the generative process to achieve
an optimal balance between fidelity and diversity in segmentation. While SSB
adopts the standard parametric configuration of DDPM [10], SSB++ introduces
task-specific optimizations to time-dependent U-Net parameters, including the
refinement of up-sampling and down-sampling layers and residual connections
to enhance feature extraction and reconstruction. These architectural advance-
ments make SSB++ a more robust and efficient solution for ambiguous medi-
cal image segmentation, consistently delivering superior performance.1 Notably,
SSB++ consistently surpasses prior approaches across all key metrics, achiev-
ing substantial improvements over the strongest baselines. The core limitation
of existing diffusion methods such as CIMD [17] and CCDM [26] lies in their
generative process itself, which starts from Gaussian noise and progressively re-
fines segmentations. This often leads to a loss of structural integrity, resulting in
coarse or anatomically inconsistent predictions. In contrast, our approach begins
from the input image itself and progressively transforms it into the segmenta-
tion mask, ensuring that the anatomical structure is well-preserved throughout

1 Complete training details of SSB++, including optimized parametric configurations,
will be made available in the code repository.
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Table 1. The results were obtained from the test set of the LIDC-IDRI, COCA, and
RACER datasets. Results for PhiSeg [4] was taken from their original research (denoted
†), while CIMD [17] and CCDM [26] were fully reproduced. Metrics with (↓) favor lower
values, while (↑) indicate higher is better. Also, DDDI entries for the COCA dataset
are empty as there are single expert masks. The reported results on the test set were
statistically significant (p < 0.05).

LIDC-IDRI Dataset
Method NFE GED ↓ Dmax ↑ CI ↑ DA ↑ Dexp

DDI ↑ Dgen
DDI ↑

Prob. UNet [12] - 0.310 0.907 0.831 97.9 0.391 0.287
PhiSeg† [4] - 0.270 0.904 0.736 - - -
CIMD [17] 1000 0.318 0.841 0.883 0.996 0.341 0.214
CCDM [26] 1000 0.264 0.886 0.918 0.997 0.402 0.324
SSB (Ours) 50 0.245 0.925 0.945 0.995 0.397 0.317
SSB++ (Ours) 50 0.208 0.943 0.958 0.997 0.427 0.356

Stanford COCA Dataset
Method NFE GED ↓ Dmax ↑ CI ↑ DA ↑ Dexp

DDI ↑ Dgen
DDI ↑

Prob. UNet [12] - 0.658 0.722 0.789 0.999 - -
CIMD [17] 1000 0.625 0.501 0.599 0.999 - -
CCDM [26] 1000 0.5 - - - - -
SSB (Ours) 50 0.421 0.891 0.908 0.999 - -
SSB++ (Ours) 50 0.372 0.941 0.955 0.999 - -

RACER (Home) Dataset
Prob. UNet [12] - 0.792 0.610 0.697 0.999 ≈0 ≈0
CIMD [17] 1000 0.758 0.503 0.601 0.999 ≈0 ≈0
CCDM [26] 1000 0.551 0.630 0.715 0.999 0.009 0.002
SSB (Ours) 50 0.528 0.635 0.712 0.999 0.008 0.002
SSB++ (Ours) 50 0.635 0.675 0.753 0.999 0.013 0.007

the process. Among prior works, CCDM performs closely yet it still struggles
to maintain structural fidelity compared to ours. Across all datasets, SSB++
achieves significant performance improvements over prior methods. For instance,
on the LIDC-IDRI dataset, SSB++ reduces GED by 21.2% compared to CCDM,
while simultaneously improving Dmax by 5.7% and CI by 4.4%, indicating that
our method generates segmentations that are both structurally accurate and di-
verse. Similar trends are observed in COCA, where SSB++ achieves a 25.6%
lower GED than CIMD, and on the in-house RACER dataset, where it further
improves GED by 19.3% and CI by 5.3% over CCDM. Qualitative results are
presented in Fig. 2.

A key contribution of this work is the introduction of DDDI , a robust metric
designed to effectively quantify inter-rater variability and consensus in ambigu-
ous segmentation tasks. Unlike the existing DA metric, which remains consis-
tently close to one and fails to meaningfully differentiate diversity across meth-
ods, DDDI provides a bounded and interpretable measure of segmentation vari-
ability, making it a more reliable indicator of diversity in medical image segmen-
tation. To comprehensively assess diversity agreement, we evaluate both Dexp

DDI ,
which captures alignment with expert annotations, and Dgen

DDI , which reflects the
diversity in generated segmentations. Our proposed SSB++ framework demon-
strates a substantial improvement over previous methods, achieving the highest
Dexp

DDI across multiple datasets. On the LIDC-IDRI dataset, SSB++ improves
expert agreement diversity by approximately 6.2% compared to CCDM, while
on the in-house RACER dataset, it increases by over 44.4%. Similarly, in terms
of generative diversity, SSB++ surpasses CCDM by 9.8% on LIDC-IDRI and
exhibits a remarkable threefold improvement on the RACER dataset, signify-
ing its ability to generate diverse yet clinically meaningful segmentation masks.
Beyond its advancements in diversity modeling, SSB++ also delivers significant
computational efficiency. While previous methods such as CIMD and CCDM
require 1000 no. of function evaluations (NFEs), SSB++ achieves superior seg-
mentation performance with only 50 NFEs, reducing computational overhead by



an order of magnitude. This efficiency makes SSB++ not only a more accurate
solution but also a more viable choice for real-world clinical deployment where
computational resources are often limited.

5 Conclusion

In this work, we present Segmentation Schrödinger Bridge (SSB), a novel frame-
work that eliminates the need of traditional diffusion training or sampling from
pure Gaussian noise and thereby by preserves the structural integrity of le-
sion features. To enhance robustness, we introduce a loss function tailored for
segmentation (LSSB), alongside a new metric (DDDI) that effectively quanti-
fies inter-rater variability and agreement. Our approach achieves state-of-the-art
performance, surpassing competing methods in both ambiguous segmentation
accuracy as well as sampling efficiency across several benchmark datasets on
medical image segmentation tasks.
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