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Abstract. Diffusion-weighted MRI (DWI) is widely used for assessing tissue 

microstructure, with echo-planar imaging (EPI) sequences being the preferred 

acquisition method due to their fast speed. However, EPI-based DWI is highly 

sensitive to field inhomogeneities, leading to susceptibility-induced distortions 

that compromise image quality. Traditional correction methods, such as TOPUP, 

estimate displacement fields from a pair of reversed phase-encoding (reversed-

PE) images to mitigate these distortions. While effective, these approaches suffer 

from high computational cost, limiting their clinical utility. In this study, we pro-

pose an unsupervised learning method for susceptibility artifact correction in EPI. 

A transformer-style convolutional network enhanced with deformable convolu-

tions is developed to estimate the displacement field from a pair of reversed-PE 

images, followed by image unwarping and intensity modulation to generate the 

distortion-free images. This approach surpasses the performance of conventional 

U-Net-based methods in accuracy. Additionally, a spatially weighted smoothness 

loss is introduced to enhance robustness against noise in the input data so that the 

predicted displacement fields from a pair of low b-value DWI can be applied to 

correct other images with different b-values and diffusion directions from the 

same subject, optimizing acquisition and computational efficiency. A single 

model was trained and evaluated on large datasets from multiple organs, acquired 

with diverse imaging sequences and parameters, at both 1.5T and 3T. Our results 

demonstrate that the proposed approach achieves generalizable high-quality dis-

tortion correction while significantly reducing processing time compared to 

TOPUP, highlighting its potential for clinical translation. 
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1 Introduction 

Diffusion-weighted imaging (DWI) is a widely used MRI technique for characterizing 

tissue microstructure [1]. Echo-planar imaging (EPI) sequences [2] are commonly em-

ployed for DWI due to their rapid acquisition speed. However, EPI sequences are 

highly sensitive to magnetic field inhomogeneities, leading to susceptibility-induced 

distortions [3]. These artifacts manifest as geometric deformations and signal reduction 

or pileups along the phase encoding (PE) direction, affecting image interpretation. 

Several post-processing techniques have been developed to mitigate susceptibility 

distortions in EPI [4–10]. Among them, the most widely established method is TOPUP 

[5]. Using a pair of reversed phase-encoding (reversed-PE) images as input, which ex-

hibit reversed distortions, TOPUP iteratively estimates a displacement field to match 

the two images with each other. Despite its effectiveness, TOPUP is computationally 

expensive, leading to clinically infeasible processing times. 

Deep learning (DL) has enabled data-driven methods for susceptibility artifact cor-

rection (SAC), where neural networks estimate the displacement field from reversed-

PE images to unwarp and correct distortions [11–15]. Once trained, the model estimates 

the distortion field in a single forward pass, significantly reducing processing time com-

pared to traditional methods. These existing DL-based methods, primarily based on U-

Net [16], have been developed mainly for brain imaging at 3T or 7T with limited testing 

on other anatomies. In DWI applications, they were only evaluated on low b-value im-

ages, overlooking the performance on high b-value images which suffer from lower 

signal-to-noise ratio (SNR) but are critical for advanced diffusion imaging in the clinic. 

In this study we propose an unsupervised learning-based SAC method that extends 

beyond previous works by incorporating a transformer-style deformable convolutional 

modulation as network building blocks and improves distortion correction accuracy in 

comparison with U-Net architectures. Additionally, a spatially weighted smoothness 

loss was introduced to improve the robustness to noise so that the estimated displace-

ment field can be used to correct not only the input reversed-PE images but also other 

DWI of the same subject, including high b-value acquisitions, with minimum noise 

propagation. Our DL model was trained and evaluated on a large multi-organ dataset 

with diverse imaging sequences, enabling a single model for SAC in different DWI 

applications. 

2 Methods 

2.1 Susceptibility artifact correction with reversed-PE images 

Susceptibility artifacts in EPI mainly manifest as distortions along the PE direction, 

which can be parametrized by a unidirectional displacement field shifting pixel coordi-

nates. The displacement field 𝑈 maps the distorted image 𝐼1 to the corrected image 𝐼𝑐, 

while −𝑈 maps the reversed-encoded image 𝐼2 to the same corrected image: 
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 𝐼𝑐 = (𝐼1 ∘ (𝐼𝑑 + 𝑈)) ∙ 𝐽𝑑𝑒𝑡(𝐼𝑑 + 𝑈), (1) 

 𝐼𝑐 = (𝐼2 ∘ (𝐼𝑑 − 𝑈)) ∙ 𝐽𝑑𝑒𝑡(𝐼𝑑 − 𝑈), (2) 

where 𝐼𝑑 represents the identity transformation, and ∘ denotes spatial unwarping. The 

unwarping process 𝐼1 ∘ (𝐼𝑑 + 𝑈) can be implemented as taking pixel value of the dis-

torted image 𝐼1(𝑥, 𝑦 + 𝑈(𝑥, 𝑦)) to generate the corrected pixel at (𝑥, 𝑦), with the second 

dimension being PE direction. 𝐽𝑑𝑒𝑡(⋅) is the Jacobian determinant to correct for intensity 

variations caused by local expansion and compression of the image signal. 

We trained a neural network to learn a mapping from the input reversed-PE images 

(𝐼1, 𝐼2) to the displacement field 𝑈. With the estimated 𝑈, corrected images 𝐼c1 and 𝐼c2 

can be generated according to Equations (1) and (2) from 𝐼1 and 𝐼2, respectively. Addi-

tionally, the displacement field can be used to correct other DWI images, e.g., with 

different b-values or diffusion directions, acquired with the same distortion pattern. 

Since low b-value DWI images typically have higher SNR, we estimate 𝑈 using a pair 

of low b-value images and apply it to correct high b-value images for the same subject. 

2.2 Network architecture for displacement estimation 

A 2D encoder-decoder architecture is built to estimate the displacement. In EPI, distor-

tions vary spatially, with large distortions at regions with strong susceptibility effects. 

Therefore, network modules with large and adaptive receptive fields are favorable. 

We adopt the convolutional modulation block from Conv2Former [17], which mim-

ics the self-attention in Vision Transformers [18] with a convolutional modulation: 

 𝐀 = DConv𝑘×𝑘 (𝐖𝟏𝐗𝐢𝐧), (3) 

 𝐕 = 𝐖2𝐗𝑖𝑛, (4) 

 𝐗𝑜𝑢𝑡 = 𝐖3(𝐀⨀𝐕) + 𝐗𝑖𝑛, (5) 

where DConv𝑘×𝑘 is a depth-wise convolution with 𝑘 × 𝑘 kernel, 𝐖1,2,3 are weight ma-

trices of linear layers, and ⨀ is the Hadamard product. This design enables each spatial 

location to interact with all the pixels within the 𝑘 × 𝑘 window centered at this location. 

 We further replace the depth-wise convolution with a deformable convolution [19], 

updating Equation (3) to: 

 𝐀 = DefConv𝑘×𝑘(𝐖1𝐗𝑖𝑛). (6) 

The deformable convolution layer adaptively augments the 𝑘 × 𝑘 square sampling re-

gion in convolution with additional learnable offsets for different spatial locations, 

making it suitable for characterizing the spatially varying distortions in EPI. 

The complete network architecture is illustrated in Fig. 1. 
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Fig. 1. Network architecture. The network employs an encoder-decoder architecture built with 

Def-Convformer blocks. It takes a reversed-PE image pair and outputs a displacement field, 

which is used to correct the distorted images through image unwarping and Jacobian modulation. 

2.3 Unsupervised loss with adaptive smoothness constraint 

Unsupervised learning is used, with the loss function consisting of two components: 

 𝐿 = 𝐿𝑀𝑆𝐸(𝐼𝑐1, 𝐼𝑐2) + 𝜆𝐿𝑠𝑚𝑜𝑜𝑡ℎ(𝑈, 𝑀). (7) 

𝐿𝑀𝑆𝐸(𝐼𝑐1, 𝐼𝑐2) measures the mean square error (MSE) between the two corrected im-

ages. 𝐿𝑠𝑚𝑜𝑜𝑡ℎ(𝑈, 𝑀) is a spatially weighted smoothness loss on the estimated field 𝑈:  

 𝐿𝑠𝑚𝑜𝑜𝑡ℎ(𝑈, 𝑀) =
1

𝑁𝑥𝑁𝑦
∑ 𝑀(𝑥, 𝑦) ((

𝜕2𝑈(𝑥,𝑦)

𝜕𝑥2 )
2

+ (
𝜕2𝑈(𝑥,𝑦)

𝜕𝑦2 )
2

)𝑥,𝑦 . (8) 

The weighting matrix 𝑀 is derived from the input images, adaptively regularizing the 

smoothness penalty across the image. In background regions with low signal intensity, 

dominated by noise, it enforces a stronger smoothness constraint to prevent noise from 

being transferred into the estimated displacement field. It is calculated as follows: 

 𝐷 = Gaussion(max(𝐼1, 𝐼2)), (9) 

 𝑀 = (1 −
𝐷

max (𝐷)
) (1 − 𝑎) + 𝑎, (10) 
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where Gaussion(⋅) denotes a Gaussian blurring operator, and 𝑎 is a parameter that con-

trols the relative smoothness penalty in high-intensity regions. 

2.4 Datasets and training experiments 

The datasets used for training and evaluating the network are summarized in Table 1. 

Multiple organs with various imaging sequences and parameters are included. Whereas 

the images are primarily low b-value DWI, a set of multi-shot EPI-based neural ana-

tomical scans is also included since the distortion mechanism is the same. Data splitting 

was performed subject-wise within each dataset, resulting in 2300/137/244 scans for 

training/validation/testing. Additional six DWI scans at 3T with both low b-values and 

high b-values (800-1000 s/mm2) in brain, prostate, abdomen, and spine were collected 

to validate and test the correction performance on high b-value DWI using the estimated 

displacement field from low b-value images. All data was acquired on clinical scanners 

(different MAGNETOM models, Siemens Healthineers AG, Forchheim, Germany), 

with informed consent from all subjects. 

Table 1. Summary of datasets. 

 Organ FS Sequences Plane Subj Vol Slices 

Multi-

organ 

DWI 

Brain 3T 
ss SE-EPI / RESOLVE, 

DWI (b=0) 

Tra, 

Cor, Sag 
29 188 8634 

Head-

neck 

3T ss IR-EPI / RESOLVE, 

DWI (b=0 / 50 s/mm2) 
Tra 

25 389 8344 

1.5T 21 167 3758 

Prostate 

3T ss SE-EPI / ZOOMit ss SE-EPI 

/ RESOLVE, 

DWI (b=50 s/mm2) 

Tra 

14 246 5412 

1.5T 11 149 3638 

Cervix 

3T ss SE-EPI / ZOOMit ss SE-EPI 

/ RESOLVE, 

DWI (b=50 s/mm2) 

Tra, Sag 

12 176 4992 

1.5T 11 80 2583 

Prostate 

DWI 
Prostate 3T 

ss SE-EPI / ZOOMit ss SE-EPI, 

DWI (b=50 s/mm2) 
Tra 206 950 23750 

Neurol-

ogy EPI 
Brain 3T 

ms EPI, 

T1 / T2 / T2* / FLAIR 

Tra, 

Cor, Sag 
14 336 12096 

Sum     343 2681 73207 

To evaluate the effectiveness of the proposed network architecture and loss design, two 

sets of experiments were conducted. First, the proposed network with deformable con-

volution modulation blocks and 3×3 kernels (denoted as Def-Convformer) was com-

pared against three ablated architectures: 1) a Convformer architecture without deform-

able convolutions but using depth-wise convolution with a 7×7 kernel, 2) a U-Net with 

deformable convolutions (Def-U-Net), and 3) a standard U-Net with 3×3 convolutions, 

which is commonly used in existing DL-based SAC methods. Second, the proposed 

spatially weighted smoothness loss, with empirically selected parameters 𝜆 = 5 and 
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𝑎 = 0.2, was compared to globally uniform smoothness losses with 𝜆 values of 0.1, 1, 

and 5. Additionally, TOPUP was used as a reference method for comparison. Normal-

ized mean square error (NMSE), peak signal-to-noise ratio (PSNR), and structural sim-

ilarity index (SSIM) were computed volume-wise between the two corrected images to 

evaluate the correction quality. 

All networks were implemented in Pytorch, trained on a machine with an NVIDIA 

A100-SXM4-40GB GPU. Adam optimizer with a learning rate of 0.0001 was used. 

3 Results 

The similarity metrics between the two corrected images in the test set are summarized 

in Table 2. Among the four networks (model 4-7), the proposed Def-Convformer 

achieved the lowest NMSE and the highest PSNR and SSIM. The results in Fig. 2 also 

show its superior performance in correcting high-resolution scans with large distor-

tions. 

As for loss function design (i.e., comparing model 1-4), the proposed Def-Con-

vformer with spatially weighted smoothness loss (model 4) achieved comparable met-

rics with TOPUP. Whereas using a smaller smoothness penalty (e.g., 𝜆 ≤ 1) improved 

the similarity between corrected low b-value images and achieved better metrics than 

TOPUP, the estimated displacement field tended to be noisy in the case of low-SNR 

inputs, which introduced substantial noise and artifacts into the high b-value images 

when it was applied to correct them (Fig. 3). The displacement field from TOPUP also 

showed a similar noise transfer issue. In contrast, the proposed spatially weighted 

smoothness loss suppressed the noise transfer in the low-SNR background region with 

a stronger smoothness penalty while maintaining the distortion correction performance 

in high-SNR regions using a smaller smoothness loss. 

In terms of inference speed, the DL model took 3.15 sec to process a 224×224×32 

image volume on an RTX A2000 GPU (4GB), whereas TOPUP took 44 min on CPU 

on an Intel Xeon Gold 6348H node with a memory allocation of 128GB. 

Table 2. Similarity metrics between the two corrected images. 

Id Model Loss NMSE PSNR (dB) SSIM 

1 Def-Convformer 𝜆 = 0.1, w/o 𝑀 0.015 37.24 0.950 

2 Def-Convformer 𝜆 = 1, w/o 𝑀 0.030 34.25 0.914 

3 Def-Convformer 𝜆 = 5, w/o 𝑀 0.047 32.24 0.882 

4 Def-Convformer 𝜆 = 5, w/ 𝑀 0.036 33.48 0.898 

5 Convformer 𝜆 = 5, w/ 𝑀 0.038 33.19 0.894 

6 Def-U-Net 𝜆 = 5, w/ 𝑀 0.038 33.28 0.894 

7 U-Net 𝜆 = 5, w/ 𝑀 0.043 32.69 0.888 

 TOPUP  0.035 33.34 0.907 



 DL-based susceptibility artifact correction for DWI 7 

 

Fig. 2. Example results in a high-resolution brain scan (b-value=0 s/mm2, matrix size = 384×384) 

with different network architectures. (a) and (b): a pair of images with opposite phase encodings 

along the anterior-posterior axis, (c): difference maps (×2) between the image pair, with NMSE 

labeled, (d): estimated displacement fields. 

4 Discussion 

An unsupervised learning-based SAC method was developed for EPI, with a novel Def-

Convformer network for displacement field estimation from a reversed-PE image pair. 

A spatially weighted smoothness loss was designed to improve robustness to noise 

while maintaining correction quality. The method was evaluated in multiple organs 

with diverse sequences and protocols, showing generalizable performance. 

EPI distortions vary spatially, with large displacements in regions of strong suscep-

tibility effects. Existing DL-based correction methods predominantly rely on U-Net ar-

chitectures, which use fixed 3×3 convolutional kernels with local receptive fields. 

While effective for many tasks, this design limits the network's ability to handle large, 

non-uniform displacements. To address this, our model incorporates deformable con-

volutional modulation blocks, allowing the receptive field to dynamically adjust and 

the features to be modulated based on local inputs. This design outperforms U-Net-

based models, particularly in high-resolution images with severe distortions. 

The correction method requires two EPI images with reversed PE directions. In 

DWI, acquiring such pairs for every b-value and diffusion direction is time-consuming, 

especially for high b-value DWI with low SNR requiring multiple averages or for large 
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numbers of diffusion directions. To improve scan efficiency and to ensure a consistent 

unwarping independent of diffusion weighting or direction, we estimate the displace-

ment field from only one pair of reversed-PE low b-value DWI and apply it to other 

single-PE images, making the approach clinically applicable by only adding one fast 

EPI scan. This design necessitates a generalizable displacement field. Our experiments 

show that while lower smoothness loss achieves better similarity metrics in correcting 

the input low b-value images, the estimated displacement fields transfer noise from the 

inputs to the high b-value images. Conversely, a stronger smoothness penalty prevents 

the displacement field from being noisy, but compromises correction performance. To 

improve this trade-off, a spatially varying smoothness loss weighted by input intensities 

was designed, which achieved a better balance by enforcing stronger smoothness pen-

alty in low-SNR background regions while applying a smaller smoothness loss in high-

SNR regions. 

 

 

Fig. 3. Example results in prostate DWI with different loss designs. (a) and (b): a pair of low b-

value images with opposite phase encodings along the left-right axis (b-value = 50 s/mm2), (c): 

difference maps (×2) between the low b-value image pair, with NMSE labeled, (d): high b-value 

DWI (b-value = 800 s/mm2) with same distortion characteristics as (a), (e): estimated displace-

ment fields from the low b-value image pair, which were directly applied to the high b-value 

image with unwarping and Jacobian modulation to provide the corrected results in (d). The fifth 

column (𝜆 = 5, w/ 𝑀) is the proposed method. 

In this study, motion between scans is assumed to be small because of the short acqui-

sition time of EPI. More evaluations on motion effects need to be done. A rigid 
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transformation can be further incorporated to be jointly estimated along with the dis-

placement field in future studies [14]. This paper primarily focuses on DWI, but the 

correction method is also applicable to other EPI-based MRI, such as functional MRI. 

5 Conclusion 

An unsupervised learning-based susceptibility artifact correction method was devel-

oped for EPI. With the proposed Def-Convformer network and a spatially weighted 

smoothness loss, a displacement field is estimated from a pair of reversed-PE images 

and then used for correcting the distortions. The Def-Convformer architecture achieved 

superior performance in comparison with conventional U-Net-based models. The DL 

approach performs competitively with TOPUP across multiple organs, while providing 

notably faster inference speed, suggesting great potential for clinical applications. 
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