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Abstract. Reliable prediction of seizure outcomes after surgical intervention be-
fore ablative surgery could play a critical role for tailoring epilepsy treatment. 
However, for diverse patient populations, accurate and personalized predictions 
remain challenging with traditional methods. Current methods rely heavily on 
clinical expertise and experience, and data driven tools may help in supporting 
clinicians to make more informed surgical decisions. This study presents a novel 
deep learning-based spatio-temporal graph neural network (ST-GNN) model to 
predict reduction in seizure frequency utilizing high-quality stereo electroen-
cephalography (sEEG) and structural magnetic resonance imaging (MRI) data.  
sEEG and MRI data are curated from patients with pharma-coresistant refractory 
epilepsy and suspected wide/complex seizure networks or multifocal epilepsy. A 
total of 10 pediatric patients with sEEG contacts in the thalamus were considered, 
where data from multiple ictal events was used to train the model. Our ST-GNN 
model integrates local and global connectivity using graph convolutions with 
multi-scale attention mechanisms to capture patterns between difficult-to-study 
regions such as the thalamus and cortical/subcortical regions, both from MRI and 
sEEG. The model achieved an accuracy of 90.4%, and 75.4% in predicting sei-
zure outcomes for seizure-wise and patient-wise prediction respectively. Edge-
level connectivity analysis highlighted the thalamus and mid insula regions as 
key regions. Our findings underscore the potential of new connectivity-based 
deep learning models leveraging multimodal data for enhancing the prediction of 
seizure outcomes and tailoring treatment planning for epilepsy. Our multi-modal 
approach can help inform AI-assisted personalized epilepsy treatment planning. 
Code is available on our GitHub. 
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1 Introduction 

Epilepsy affects approximately 50 million people worldwide, with nearly one-third ex-
periencing drug-resistant epilepsy (DRE), where seizures persist despite multiple anti-
seizure medications [1]. There is strong evidence that surgery can be highly effective 
in reducing seizure frequency and improving quality of life in patients with DRE [2]. 
However, effectiveness of ablative surgery remains difficult to predict and is highly 
dependent on the experience of the clinical team and various observations including 
imaging, physiological data and neurophysiological evaluations guiding the decisions. 

Success of epilepsy surgery heavily depends on the accurate identification of the 
seizure onset zone (SOZ) and its epileptogenic network. The prediction of seizure out-
comes after surgery has remained challenging especially for those with suspected 
wide/complex seizure networks or multifocal epilepsy where resection or ablation is 
not an option [3]. This critical need for accurate outcome prediction has driven research 
into developing sophisticated analytical approaches [4]. Intracranial observations using 
stereo-electroencephalography (sEEG) and subdural grids implantation, and non-inva-
sive magnetic resonance imaging (MRI) are widely used methods for identifying the 
lesions and underlying seizure networks causing ictal events. For cases where such le-
sions are not seen on MRI scans, sEEG is used for more conclusive observations and 
identification of the epileptogenic zone [5]. MRI provides detailed anatomical images 
of the brain, aiding not only in identifying structural abnormalities but also guiding 
sEEG trajectory planning. sEEG offers deep brain recording capabilities with high tem-
poral resolution and is often used to identify discrete neocortical SOZs. Among the 
subcortical regions involved in the propagation of seizures, thalamic nuclei have re-
peatedly shown interconnectedness with ictal brain regions [6–8]. In a study investigat-
ing energy distribution between temporal cortices and the anterior nucleus of thalamus 
(ANT) across seizure stages, the average thalamic power was found to be significantly 
higher at seizure onset compared to baseline power [9]. 

Sampling of thalamic targets during sEEG is a developing area of surgical epilepsy 
clinical practice. The increasing inclusion of thalamic recordings has opened new ave-
nues for understanding thalamocortical networks, which are fundamental to both de-
veloping brain function and pathological states [7]. Moreover, traditional visual analy-
sis of sEEG recording often struggles to capture the thalamic signatures involved in the 
complex, interconnected nature of epileptic networks, particularly the subtle thalamic 
seizure onset patterns [8, 10]. Graph Neural Networks (GNNs) present a promising ap-
proach for analyzing such complex neural data, as they can model the brain's networked 
structure and capture both local and global connectivity patterns [11, 12]. In graph-
based applications, brain regions are represented as nodes, and the strength of their 
connections as edges, hence enabling the representation of connectivity patterns. There-
fore, unlike traditional machine learning approaches, GNNs can explicitly incorporate 
spatial relationships and non-linear interactions between brain regions, making them 
particularly well-suited for analyzing thalamocortical connectivity patterns in epilepsy. 

In this paper, we present a novel multi-modal spatio-temporal GNN-based classifier 
model for predicting seizure outcomes using sEEG, with thalamic sampling and MRI 
data from patients with suspected wide epileptic networks or multifocal epilepsy. Our 
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method combines temporal precision and structural mapping, offered by sEEG and 
MRI, respectively, to develop a GNN that can capture the complex interactions between 
various brain regions, especially the critical connections between the thalamus and cor-
tical structures. We also applied our model to study connectivity during seizures and 
identify the most important brain regions for the seizure outcome classification task. 
Our approach provides valuable insights into poorly understood seizure dynamics, such 
as the relationship between seizure onset zones and seizure networks. 

2 Methodology 

The proposed methodology is shown in Figure 1, where we incorporate multimodal 
graph learning to predict seizure outcomes in pediatric patients.  
 

 
Figure 1: Overview of the proposed pipeline integrating sEEG and MRI data to predict seizure 

outcomes in pediatric epilepsy. X and Y in Graph objects refer to the node feature matrix, 
where X refers to nodes and features and Y is the graph label. The edge index matrix is the con-

nectivity of the graph. 

2.1 Patient Selection 

This is a retrospective study performed on 10 consecutive pediatric patients with phar-
macoresistant epilepsy who underwent sEEG with thalamic interrogation and subse-
quently underwent the definitive procedures for epilepsy at our medical center from 
July 2023 to August 2024. The seizure outcomes were recorded at 6 months follow up 
post-surgery. The study was conducted under the Institutional Research Board’s (IRB) 
approval without written consent required from all included patients. All data were ob-
tained in routine clinical care. Relevant clinical information such as demographics, se-
miology, etiology, preoperative testing, results in noninvasive epilepsy investigations, 
details of sEEG procedure, definitive epilepsy surgery after sEEG, and seizure outcome 
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at the last follow-up were extracted from patient records. The clinical outcomes and 
sEEG data were analyzed to identify patterns indicating thalamic nuclei involvement 
in observed epilepsy networks.  

The sEEG electrodes targeting thalamic nuclei, including the anterior nucleus of 
thalamus (ANT), centro-median nucleus (CM), or pulvinar (PUL), were selected based 
on the suspected SOZs and the known anatomical connectivity of thalamic nuclei. Post-
operative computed tomography scans were used to segment and reconstruct each depth 
electrode targeting a thalamic nucleus. ROSA ONE Brain and Surgical Theater was 
utilized for accuracy, particularly in identifying the number of contacts successfully 
placed within each nucleus. Any electrode contacts located outside the planned tha-
lamic subdivision were excluded from the analysis.  

MRI data was collected with an 8-channel head coil on a 3T General Electric scan-
ner. A gradient echo pulse sequence was used with 3mm isotropic voxels, repetition 
time = 2s, flip angle = 90deg, and in-plane field of view = 192 x 192 mm. Data was 
collected as part of an ongoing clinical research dataset and was approved by the IRB 
at Children’s National Hospital. The reported outcome from self or caregiver at the last 
follow-up was noted in patients at least six months after the definitive procedure for 
epilepsy. These outcomes were classified as: (1) seizure‐free, complete elimination of 
seizures; (2) excellent, >80% reduction in seizure frequency; (3) good, >50% reduction 
in seizure frequency; (4) poor, <50% reduction in seizure frequency; and (5) worse, 
worsening of seizures and/or unacceptable neurologic deficit [13]. The study catego-
rized patients into two groups based on percentages of seizure frequency reduction de-
scribed. Group I (class 1), which includes patients with more than 50% seizure reduc-
tion, consisted of 3 patients. Group II (class 0), with patients experiencing less than 
50% seizure reduction, included 7 patients. In total, the study included 10 patients and 
105 ictal events.  

2.2 Data Pre-processing 

 

Figure 2: The pre-processing for neuroimages pipeline. (A) Original patient MRI, (B) skull-
stripped image, (C) registration of patient to template, (D) final normalized image. 
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The overall per-processing pipeline is shown in Fig. 2. For all patients, neuroimaging 
MRI data were skull-stripped with 3D Slicer and registered non-linearly with rigid 
transformation to the Montreal Neurological Institute (MNI) 152 T1-weighted brain 
template with MIPAV [14–17]. MNI is commonly used in neuroimaging to align and 
compare brain images from different individuals. The purpose of normalization in-
volves transforming individual MRI scans to this common reference space, ensuring 
that anatomical features are consistently aligned across different subjects. This process 
facilitates reliable comparison and analysis in neuroimaging studies by removing vari-
ability and enhancing the reproducibility of findings across different studies and re-
search groups by aligning regions of interest (ROIs). The resulting structural MRIs of 
each patient were in normalized space and served as the foundation for the initial graph 
structure. sEEG pre-processing was conducted with MNE-Python [18]. The raw signal 
underwent several pre-processing steps: resampling to 128 Hz, normalization by sub-
tracting the mean and dividing by the standard deviation and padding each sample to 
5,000 time points. After preprocessing, data was aligned with its corresponding MRI-
derived ROIs by anatomical region-based coordinates in MNI space that were manually 
annotated. The channels were then grouped into ROIs and used as nodes in graph con-
struction. 

2.3 Model Development and Testing 

Following preprocessing, sEEG and MRI data were structured into graph representa-
tions, where each brain ROI served as a node. Temporal edges were established be-
tween nodes based on sEEG correlation patterns, while spatial edges were based on 
distance between nodes, integrating both structural and functional connectivity. The 
model architecture consisted of two graph layers using graph attention networks (GAT), 
with each layer using 4 attention heads to capture different aspects of node relation-
ships. Feature analysis leveraged the attention mechanisms intrinsic to the GAT archi-
tecture to identify important brain regions. The attention coefficients revealed which 
nodes were most influential in the model's decision process by measuring how strongly 
each region attended to others in the graph. The data was then analyzed for correlation 
between channels by Pearson Correlation given as 𝑝 = 𝐶𝑜𝑣	( !,#

$!$"
), where X and Y are 

the channel pairs analyzed for correlation. The correlations were visualized in a graph 
network to compute thalamic nodes’ eigenvector centrality using 𝑥% =

&
'
∑ 𝑎%,(𝑥((∈*  , 

where av,t is the adjacency matrix, xt is the eigen vector of a, λ is the largest eigen vector, 
and G is the set of vector neighbors; and network density 𝜌 = +,

-(-/&)
, where E is the 

number of connections (edges) in the network and n is the total number of nodes.  

3 Experiments and Results 

We conducted multiple experiments to compare our model’s performance in detecting 
seizure outcomes. The model performance is evaluated using metrics including 
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accuracy, precision, recall and F1 score. We conducted experiments to evaluate the 
effectiveness of leveraging multimodal data. We also evaluated the model performance 
using data from 1) ictal events and 2) patient-wise approach. Both experiments were 
compared against our multimodal pipeline as shown in Fig 1. For the patient-wise anal-
ysis, we employed a Leave-One-Out cross validation (LOOCV) approach, sequentially 
training the GNN model on all patient graphs except for one patient, which was used 
as the test case. Hyperparameter tuning with 20 trials and 50 epochs per trial was done 
using Optuna. Class weight computation was done using sklearn to account for class 
imbalance in the data. ReLU activation functions and dropout (rate 0.21) were applied 
after each layer, followed by global mean pooling for node feature aggregation. 

Training was optimized using the cross-entropy loss function and the Adam opti-
mizer. The model was trained for 100 epochs. To rigorously assess the model’s perfor-
mance, 10-fold stratified cross-validation was employed. The dataset was systemati-
cally divided into 10 equally sized subsets, with each subset serving as a held-out test 
set in turn. Performance metrics were calculated for each fold and subsequently aver-
aged for accuracy, precision, recall and F1-score. Training was conducted on a Nvidia 
RTX A5000 GPU, with a total runtime of approximately one hour.  

Table 1. Results from our pipeline predicting reduction in seizure frequency. 

 
 Multimodal sEEG Only Patient-Wise 

Accuracy 90.4% 77.1% 75.4% 
Precision 93.1% 69.2% 80.0% 
Recall 90.4% 77.1% 75.4% 
F1 90.9% 71.7% 77.5% 

Table 1 shows a summary of the performance metrics and shows our multimodal strat-
egy demonstrated strong classification performance across multiple evaluation metrics. 
It achieved an accuracy of 75.4% for patient-wise analysis. In seizure-wise classifica-
tion using multimodal data the accuracy is 90.4%, while without MRI, accuracy was 
77.1%. The lower performance in patient-wise analysis is attributed the smaller number 
of patients included in the study. We also clearly see that the performance improves 
when multimodal data is used to make outcome prediction. This lays the groundwork 
to include functional MRI data in future studies for further improvements in prediction 
performance.  

4 Discussion  

Figure 3 shows the regions identified as most important during classification, with the 
highest values being of the mid insula and thalamus. Figure 4 shows the sEEG connec-
tivity in the thalamocortical network engaged during seizure onset and at seizure end, 
for patients with high (class 1) or low reduction (class 0) in seizure frequency. The 
network graphs show a stronger correlation between cortical and thalamic channels in 
patient with lower reductions during seizure onset, with network density of 1 compared 
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to 0.4 in patient with greater reduction. Class 0 had greater network differences between 
start and end of seizure (density = -0.03, average centrality = -0.6) than class 1 (density 
= -0.01, average centrality = -0.2). The average eigenvector centrality of thalamic nodes 
was similar (A = 0.44, B = 0.4) for both at seizure onset and seizure end (A = 0.32, B 
= 0.3). 

 
Fig. 3. Node importance map for seizure outcome classification identified through attention in 
our model. The feature analysis reveals that the model attends the most to the thalamus (MFCM 
= 0.113) and mid insula (SCMI = 0.131), with the rest 9 regions falling in the range 0.037-0.057. 

Our study cohort is unique, and it is rare to find high quality signals from such deep 
parts of the brain such as thalamus. Compared to typical recordings, this high-quality 
sEEG data with thalamic implantation provides a much more detailed and precise rep-
resentation of the brain's electrical activity and connectivity with the cortical regions. 
This level of detail is crucial for accurately identifying the complex neural networks 
involved in seizure activity and for making informed decisions about surgical interven-
tions. Predicting the outcome pre-surgery can help clinicians decide on the most effec-
tive course of treatment to achieve higher reduction in seizure frequency for difficult 
patients. This predictive capability is especially valuable in tailoring surgical ap-
proaches to individual patients. While we show the potential of utilizing multimodal 
data for brain connectivity analysis (accuracy increasing by 13.3%, when compared to 
sEEG only) in pediatric epilepsy with complex seizure networks, our study has several 
limitations.  

During registration, the deformations in some of the patient brains presented chal-
lenges arising from the variability in pediatric brain related to age and limited availa-
bility of appropriate atlases. For example, in the final registered image in Figure 2, the 
ventricles don’t fully align with the template due to the gross deformation on the right 
side. Hence, there is a need for improved registration techniques to ensure precise three-
dimensional analysis. Further, variations in individual patient characteristics, such as 
the type of epilepsy, may not be fully captured in a small sample size such as ours. It is 
important to acknowledge that our current model, while promising, will need further 
refinement to account for these individual differences, though our model demonstrates 
the validity of using MRI with sEEG to predict surgical outcomes. 

Future studies that include larger and non-pediatric patient populations can refine the 
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model's performance, increasing its applicability and reliability in different clinical set-
tings. Expanding the sample size would also enable the exploration of more nuanced 
patterns and relationships within the data, ultimately enhancing the model's predictive 
capabilities and clinical utility as a component of an AI-assisted pipeline for seizure 
network analysis and surgical guidance. 

 

Fig. 4. Comparison of network connectivity between a sample patient from class 0 (A) and class 
1 (B) at seizure onset and seizure end. The blue nodes represent the thalamus (RMCM, LMCM) 
with the following cortical regions: Anterior Insula (LAIN); Amygdala (RMA); Hippocampus 
(RMH). 

5 Conclusion 

Our study presents a pioneering pipeline for predicting epilepsy surgery outcomes and 
understanding seizure dynamics in patients with refractory epilepsy and complex 
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seizure networks using a multi-modal approach. Our results demonstrate high accuracy 
for binary-class prediction of seizure outcomes in terms of seizure frequency reduction, 
as well as patient-wise analysis. Our model is developed for patients with complex sei-
zure networks with demonstrated involvement of thalamus region using sEEG data. 
The channels identified as important by the model matched those channels clinically 
identified as the SOZs, adding credence to our results. The implications of this work 
extend beyond predicting a reduction in seizure frequency; GNNs such as the one we 
developed may help guide future research to understand the connectivity of the brain 
and how the brain reacts to disruptions in its connectivity networks during traumatic 
neurological events such as seizures, traumatic brain injury, and diffuse axonal injury. 
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