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Abstract. Many barriers remain before the clinical translation and de-
ployment of prognostic and predictive models utilizing deep learning
in digital pathology. In particular, models need to be generalizable to
widespread variations in image characteristics resulting from differences
in slide preparation protocols and inter-scanner variability. Yet, most
existing stain deconvolution methods that correct for the variability in
image appearances were developed and validated on specific datasets and
perform poorly on unseen data. We developed Physics-Guided Deep Im-
age Prior network for Stain deconvolution (PGDIPS), a self-supervised
method guided by a novel optical physics model to perform zero-shot
stain deconvolution and normalization. PGDIPS outperformed state-of-
the-art approaches for the deconvolution of conventional stain combina-
tions, enabled analysis of previously unsupported special stains, and pro-
vided superior interpretability by explicitly encoding representations for
stain properties and the light transmittance/absorbance process. PGDIPS
is publicly available as an end-to-end off-the-shelf tool at https://github.
com/GJiananChen/PGDIPS.
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1 Introduction

Computational pathology models extract quantitative features from digital pathol-
ogy data, often in conjunction with clinical annotations and data from other
omics domains, in order to aid disease diagnosis, treatment selection and drug
target discovery [2, 16]. However, many hurdles remain to be overcome before
advances in computational pathology can be translated into routine use [5]. In
particular, the use of different slide preparation protocols and scanners across in-
stitutions requires models to be generalizable across images with widely varying
characteristics [25]. This has led to an interest in stain deconvolution (SD) and
stain normalization methods that aim to correct for variabilities in image ap-
pearances. Despite being a key pre-processing step in computational pathology,
stain deconvolution remains an open problem [7].

https://github.com/GJiananChen/PGDIPS
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Conventionally, SD is formulated as a matrix decomposition problem that
deconvolutes the optical density of a stained slide into multiple paired color
vectors and concentration maps [21]. Conventional SD methods are based on
the Beer-Lambert Law, which relates, linearly, the attenuation of non-scattering
light to the properties of the stained tissue through which the light is travel-
ing [24]. Nevertheless, application of Beer’s law is hindered under conditions of
complex non-linear image formation ubiquitous in digital pathology images, for
example due to saturation effects from high concentrations, scatter effects, or
the presence of polychromatic light [19]. This leads to systemic deconvolution
errors, especially for special stains [4, 9].

Deep-learning-based SD approaches have been proposed to alleviate the short-
comings of traditional SD methods [23]. As singly-stained slides are not rou-
tinely collected in clinical practice and rarely available for model training [7],
most deep-learning-based SD models are designed to directly generate normal-
ized images instead of explicitly performing stain deconvolution. Such processes
depend on large, carefully curated datasets [8, 11,12,18,22]. As a result of their
data-driven nature, existing deep-learning-based SD methods exhibit impressive
performance on the datasets they have been trained on, but struggle with gen-
eralizability on unseen data and unseen stains. As a complementary approach,
stain augmentation has also been proposed as a more effective solution for ad-
dressing stain variations that could replace SD [25]. However, recent work has
shown that even foundation models trained with extensive contrastive color aug-
mentations are not robust to stain variations [10], suggesting that a re-evaluation
of the value of classic SD methods may be in order.

As a result, conventional SD algorithms [17, 27, 30] remain the go-to meth-
ods for general SD tasks [1]. Yet, there continues to exist the need for an SD
method that combines the strength of conventional and deep-learning-based SD
algorithms, namely zero-shot, accrurate and generalizable. To address this gap,
we propose Physics-Guided Deep Image Prior network for Stain deconvolution
(PGDIPS), an end-to-end and zero-shot SD algorithm that can robustly and ac-
curately deconvolute arbitrary numbers and types of stains. We extensively vali-
dated PGDIPS on different combinations of digital pathology stains and bench-
marked PGDIPS against state-of-the-art zero-shot SD algorithms to demonstrate
its superior applicability and performance.

2 Methods

PGDIPS implements an end-to-end neural network for the deconvolution of dig-
ital pathology images (Figure 1). PGDIPS represents a new paradigm for gen-
eral stain deconvolution (SD) that features a self-supervised deep learning model
whose training is guided by an optical physics model. More specifically, PGDIPS
encodes an adapted Beer-Lambert model in its structure, and follows a deep im-
age prior (DIP) training scheme to solve the model and perform stain deconvo-
lution without the need for training data. PGDIPS can thus be readily applied
to any type and number of stains.
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Fig. 1. PGDIPS network structure diagram featuring a modified Beer-Lambert model
solved by components estimated by multiple deep image prior (DIP) modules.

Deep Image Prior modules A DIP network takes random noise as input
and attempts to find a mapping that transforms the random noise into the
target image [26]. During this zero-shot self-supervised process, the convolutional
filters of the DIP network capture image-intrinsic priors as building blocks (i.e.,
deep image priors) for reconstructing the target image. With the appropriate
capacity, a DIP network will ignore high-frequency noise and learn the underlying
image priors, making it a powerful method for image-inverse problems and image
generation.

PGDIPS was inspired by Double-DIP [6], an algorithm that combined two
DIPs using a simple linear equation to perform image decomposition tasks such
as segmentation and dehazing. We extended this concept and assembled multiple
DIP modules to estimate stain concentration maps CCC in our adapted optimal
physics model, with the number of DIP modules corresponding to the number
of stains to deconvolute. DIP modules follow the design of U-Net [20] and the
structures described in [6].
Problem formation Following conventional SD methods [17,21], PGDIPS con-
verts RGB intensities of the target image III ∈ Rw×h×3 into corresponding op-
tical density values DDD ∈ Rw×h×3 by taking the logarithm of III normalized by
the maximum possible Intensity III0 = 255. Based on the Beer-Lambert Law, the
optical density values DDD can be decomposed into individual concentration maps
CCC ∈ Rw×h×N and stain color vectors SSS ∈ RN×3 for N types of stains (Eq. 1).

DDD = − log10(
III

I0
) = CSCSCS (1)
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Spectral correction To address systemic errors in SD caused by differences
in the spectral properties of individual stains [9], we adapt the Beer-Lambert
model by proposing a stain spectral correction factor MMM ∈ RN for each stain. For
example, DAB is known to be a scatterer of light compared to hematoxylin [14],
but in conventional SD models, DAB and hematoxylin are assumed to contribute
equally to the final image. Adding a learnable weightMMM allows the deconvolution
model to adjust the contribution of each stain accordingly.
Background correction In addition, background illumination may affect the
perceived color of images captured by a scanner, and the effect may vary across
different scanners. PGDIPS further estimates the effect of background illumi-
nation by capturing any consistent optical density that exists throughout the
target image. This is achieved using a background illumination correction factor
BBB ∈ R1×3, which encodes the RGB channels of a uniform background illumina-
tion across the entire image patch.
Objective & loss function Given a target image, the main objective of PGDIPS
is to train a model FFF (.) parameterized by a neural network θ that generates an
image using the specified optical physics model that minimizes the pixel-wise
difference between the generated image and the target image (Eq. 2):

FFF θ(MMM,CCC,SSS,BBB) =

∫
|DDD −

N∑
n=1

MnCCCnSSSn − 111BBB|2dx (2)

where θ = {θ1, θ2, ..., θN} denotes the weights of a series of DIP modules, x
denotes each pixel in the image III and 111 ∈ Rw×h×1 is a matrix filled with ones.
The loss function of PGDIPS consists of an MSE reconstruction loss derived
from this main objective and an exclusion loss to encourage the separation of
stains (Eq. 3):

L = αLrecon + βLexcl (3)
The exclusion loss reduces correlation between the gradient magnitudes of the
predicted stain concentration maps (e.g., hematoxylin versus eosin), calculated
via element-wise multiplication of their normalized gradients across multiple
spatial resolutions, as described in [29]. We empirically selected weights of loss
functions, and applied the same set of loss weights α = 1 and β = 0.01 for all
experiments. Stain vectors, spectral correction factors and background correction
factors are directly optimized.
Stain normalization As a direct downstream application of SD, stain normal-
ization is typically performed by applying a standard set of stain color vectors
from the target stain type to all estimated concentration maps [13,27]. We aug-
mented this approach by additionally applying the PGDIPS-estimated spectral
correction factors and background illumination factor from the reference image,
i.e. the image whose color style is used as the target for normalization.

3 Experiments

Qualitative evaluation of zero-shot SD on various stains Zero-shot stain
deconvolution was performed using PGDIPS on six different types of staining
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(Fig. 2), with comparisons to Macenko [17] and Vahadane [27] as they remain
the most widely used zero-shot stain deconvolution (SD) techniques. While sev-
eral recent deep-learning-based algorithms for stain normalization exist, they
require large training datasets and are as a result both impractical and out-of-
scope for the benchmarking of zero-shot SD methods [8, 11,12,18,22].

Quantitative evaluation metrics Pearson correlation coefficient (PCC) and
structural similarity index (SSIM) [28] were used for quantitative evaluation of
SD results. PCC measures the linear correlation between stain concentration
maps and ground truths, and SSIM quantifies the visual similarity and fidelity.

Quantitative evaluation on H&E images The performance of PGDIPS for
H&E staining deconvolution was quantitatively evaluated against Macenko and
Vahadane on a breast cancer dataset with paired H&E and immunofluorescence
(mIF) DAPI images [3] (Fig. 3a). Co-registered DAPI images were used as the
surrogate ground truth for hematoxylin deconvolution, as DAPI and hematoxylin
both stain cell nucleus. Non-overlapping 512x512 H&E tiles were cropped from
81 images and filtered based on proportion of non-tissue background, resulting
in 2008 tiles. DAPI mIF images were co-registered with the fixed H&E images
using scale-invariant feature transform [15] followed by affine transformation.

Quantitative evaluation on immunohistochemistry (IHC) images The
performance of PGDIPS for special stain deconvolution was benchmarked using
the test set of DeepLIIF [7], which contains 598 sets of co-registered images with
IHC hematoxylin and DAB staining, hematoxylin-only staining, mIF DAPI and
mIF Ki-67 (Fig. 3c). Both hematoxylin-only staining and DAPI were used as
the ground truth for hematoxylin deconvolution. Ki-67 was similary used as the
label for DAB deconvolution, as Ki-67 and DAB both stain Ki-67-positive cells.

Stain normalization and interpretability Stain normalization was performed
on the training set of MIDOG2022 [1], which contains 354 high-power field im-
ages of 150 human breast cancers and 204 canine tumors generated across 5 dif-
ferent types of scanners. Nine connected non-background 512x512 patches were
randomly selected from each high-power field image to generate 3186 patches for
the experiment. The vector parameters estimated by PGDIPS (i.e., MMM,SSS, and
BBB) were visualized using t-SNE.

Table 1. PCC and SSIM of deconvoluted hematoxylin and co-registered DAPI for the
breast H&E dataset. Values are denoted in mean ± std, n=2008.

Method PCC p-value SSIM p-value
Macenko 0.55 ± 0.17 <0.01* 0.35 ± 0.15 <0.01*
Vahadane 0.47 ± 0.13 <0.01* 0.24 ± 0.13 <0.01*

PGDIPS(ours) 0.59 ± 0.12 Ref 0.52 ± 0.12 Ref
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Fig. 2. Deconvolution of 6 different types of stains, with qualitative comparisons.

Table 2. PCC and SSIM of deconvoluted hematoxylin and co-registered hematoxylin-
only staining (H) and DAPI (D), and deconvoluted DAB and co-registered Ki-67 (K)
in the DeepLIIF IHC dataset. Values are denoted in mean ± std, n=598.

Method PCC (H) p SSIM (H) p PCC (D) p SSIM (D) p
Macenko 0.77±0.10 * 0.30±0.08 * 0.75±0.11 * 0.39±0.07 *
Vahadane 0.71±0.13 * 0.24±0.07 * 0.69±0.11 * 0.31±0.06 *

PGDIPS(ours) 0.81±0.10 Ref 0.46±0.11 Ref 0.79±0.11 Ref 0.59±0.12 Ref
PCC (K) p SSIM (K) p

Macenko 0.67±0.13 * 0.40±0.04 *
Vahadane 0.67±0.14 * 0.33±0.03 *
PGDIPS 0.72±0.13 Ref 0.77±0.10 Ref
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Fig. 3. a) Example H&E and DAPI image, and deconvolution results. b) Stain color
vectors estimated in HSV color space, n = 2008. c) Example Hematoxylin&DAB,
DAPI, Ki-67, and hematoxylin-only image. d) Deconvolution results. e) Estimated
background illumination, f) Stain color vectors estimated in HSV color space, n = 598.

Fig. 4. PGDIPS-estimated parameters cluster by scanner type. Example stain-
normalized images are shown alongside the original images.



8 J. Chen et al.

4 Results

Qualitative evaluation of zero-shot SD on various stains PGDIPS achieved
visually correct deconvolution across the stains tested without hyperparameter
tuning (Fig. 2a-f). While Macenko and Vahadane especially had difficulties with
the stain vectors of one or more special stains, PGDIPS produced reconstructed
images with higher visual fidelity and colour vectors with higher visual accuracy.
PGDIPS handled images of all dimensions and magnifications, and took 2GB
of VRAM and 40 seconds to deconvolute an image tile of size 512x512, or on
average 2 seconds per tile when inferencing on batches on a Nvidia A100 GPU.

Quantitative evaluation on H&E images PGDIPS achieved significantly
higher deconvolution accuracy compared to Macenko and Vahadane, as mea-
sured by Pearson correlation coefficient (PCC) between the deconvoluted hema-
toxylin stain and the co-registered mIF DAPI image (Table 1). PGDIPS also
performed substantially better in the structural similarity index (SSIM), a mea-
sure for tissue structure preservation [28], suggesting that its DIP-based design
enabled better nuclei structure preservation, which may have implications for
downstream analyses. The compact distribution of color vectors estimated by
PGDIPS also reflected the performance stability of PGDIPS in a cohort of im-
ages processed with the same staining protocol and the same scanner (Fig. 3b).

Quantitative evaluation on IHC images The reconstructed images gener-
ated by PGDIPS harboured greater visual resemblance to the target images,
compared to Macenko and Vahadane (Fig. 3d), in part due to its ability to es-
timate and isolate the background illumination (Fig. 3e). PGDIPS also achieved
significantly superior performance in deconvolution accuracy and structure preser-
vation for hematoxylin deconvolution, both when using mIF DAPI and hematoxylin-
only staining as the ground truth (Table 2). PGDIPS performed similarly well in
deconvolution accuracy and cell structure preservation for DAB deconvolution,
evaluated against mIF Ki67. In contrast, color vectors estimated by Macenko
were consistently biased and led to spurious concentrations in the deconvoluted
DAB layer, while cell structures were poorly preserved by Vahadane in the de-
convoluted hematoxylin layer. Greater variation in color vectors was observed in
the DeepLIIF test set, likely caused by differential presence of Ki67-positive cells
(Fig. 3f). These findings underscore the challenges of special stain deconvolution
and validate the generalizability of PGDIPS.

Stain normalization and interpretability Stain normalization using PGDIPS
achieved visually consistent appearance in the MIDOG 2022 dataset, across dif-
ferent studies, scanners, and tissue types, corroborating the accuracy of param-
eter inference by PGDIPS. Visualization of PGDIPS-estimated paramters after
dimensionality reduction revealed the clustering of images driven by scanner
type, despite differences in tissue types and centers, highlighting the importance
of correcting for inter-scanner variability prior to downstream tasks (Fig. 4).
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5 Conclusions and Discussion

We present PGDIPS, an algorithm for zero-shot general stain deconvolution.
PGDIPS focuses on strong generalizability without the need for expert knowl-
edge, data collection or hyperparameter tuning, and outperformed existing zero-
shot SD approaches in a variety of stain types. We have made PGDIPS an easily
accessible off-the-shelf tool for general-purpose SD that could be incorporated
into most digital pathology workflows.

Currently, deep-learning-based algorithms operate on image tiles and require
stitching to generate whole slide image (WSI)-level results. This could lead to
checkerboard artifacts due to intra-slide stain variabilities. In future studies, we
will analyze WSI processing stability and investigate ways to generate robust yet
variability-aware WSI-level SD results. We will also, in subsequent work, com-
pare PGDIPS with non-zero-shot deep generative methods. PGDIPS represents
a new paradigm in physics-guided stain deconvolution and normalization, one
we believe will inspire novel research and methodology development.
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