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Abstract. Automated tooth arrangement is a crucial stage in digital or-
thodontic planning. Existing learning-based methods are based on large-
scale expert-designed treatment plans, but high-quality arrangement re-
sults are difficult to obtain. Semi-supervised learning is commonly ap-
plied in scenarios with limited labeled data. However, due to the challenge
of evaluating the confidence of pseudo-labels, previous works have not
effectively explored semi-supervised tooth arrangement as a regression
problem. To address this, we propose a semi-supervised tooth arrange-
ment framework guided by dental arch priors and iterative confidence
evaluation. We establish a teacher-student-based semi-supervised frame-
work and introduce a weak-to-strong consistency regularization tailored
for 3D point clouds. Inspired by optimization problems, we iteratively
analyze errors to assess the confidence of pseudo-labels generated by the
teacher network, mitigating the challenge of filtering low-quality pseudo-
labels in regression. In addition, we predict the dental arch width to re-
duce the complexity of learning intricate transformations and leverage it
as orthodontic prior information to improve arrangement accuracy. Our
framework fills a critical gap in the field, and its core ideas can be gener-
alized to other regression tasks. On a high-quality dataset, our method
achieves competitive results with minimal labeled data. Code and typical
data are available at https://github.com/oblivionis-tgw/ITMatch.
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1 Introduction

Digital orthodontic planning, which leverages computational methods to design
optimal treatment plans, is progressively reshaping modern dental practices [9].
Automated tooth arrangement is a key step in digital orthodontic planning,
aiming to predict optimal tooth positions to achieve both functional occlusion
and aesthetic outcomes. In recent years, advances in deep learning have facili-
tated the application of learning-based methods to the tooth arrangement task.
Several methods [18,3,15,8] have explored point cloud-based predictions of final
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tooth positions, but the performance is heavily constrained by the availability
of high-quality labeled data. Due to the complexity of orthodontic treatment
and individual patient variability, manual annotation is expensive and difficult
to obtain, limiting the scalability of supervised learning methods.

Semi-supervised learning (SSL) offers a promising alternative by leveraging
a limited number of labeled samples alongside a large volume of unlabeled data.
While SSL has achieved remarkable success in classification tasks [1,12,17], its
application to regression problems remains an active research area. One key
challenge is the reliable assessment of pseudo-labels for continuous target val-
ues [7,14]. Existing approaches [5,4,19,16] using image, textual, or point cloud
inputs employ uncertainty-based filtering strategies for pseudo-labels in regres-
sion tasks such as age estimation and object detection, but struggle with teeth
transformations due to complex geometric and spatial relationships among teeth.

Tooth arrangement presents additional challenges beyond standard regres-
sion: it requires both local and global structural perception, estimation of fi-
nal positions, and the regression of rigid transformation parameters. Training a
robust point cloud regressor under limited supervision is particularly difficult,
often leading to high pseudo-label noise. Therefore, it is crucial to incorporate
domain-specific priors to simplify learning and improve pseudo-label reliability.

In this paper, we formulate automated tooth arrangement as a 3D point cloud
regression problem and propose a semi-supervised regression framework based
on a teacher-student paradigm, where the student network learns from pseudo-
labels provided by the teacher network of the same architecture. Consistency
regularization is commonly used in SSL to enforce consistency in network pre-
dictions under different input perturbations. In our case, given dental cases with
identical tooth morphology, the network should naturally yield similar predic-
tions when provided with different perturbations of the initial tooth positions.
Therefore, we design a weak-to-strong consistency regularization strategy tai-
lored to this problem within our framework.

A key challenge in semi-supervised regression is pseudo-label confidence esti-
mation, particularly in 3D geometric transformations. Since tooth arrangement
operates in an inherently iterative manner, we draw inspiration from iterative
optimization methods [6], where convergence is assessed based on error reduc-
tion between consecutive iterations. i.e., the algorithm is considered converged
when |f(f(xi)) − f(xi)| < ϵ. Inspired by this principle, we propose an itera-
tive confidence evaluation mechanism, which quantifies pseudo-label reliability
by measuring the discrepancy between consecutive predictions. This effectively
filters out low-quality pseudo-labels, improving the stability of semi-supervised
training. In addition, we introduce a regularization loss during supervised train-
ing, discouraging unnecessary re-arrangement of already well-aligned teeth.

To further enhance robustness under limited supervision, we employ a multi-
task learning strategy to assist both regressor training and confidence evaluation.
Specifically, we introduce an auxiliary regression head to predict the dental arch
width, encoding the extracted features as orthodontic constraints, guiding the
arrangement predictions. This auxiliary task not only simplifies the learning of
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intricate tooth transformations but also enhances the accuracy of pseudo-label
confidence evaluation.

In summary, our major contributions are: 1) We propose the first semi-
supervised regression framework for automated tooth arrangement, introducing a
weak-to-strong consistency regularization method tailored for point cloud inputs.
2) We propose a novel iterative confidence evaluation mechanism to effectively fil-
ter pseudo-labels, addressing a key challenge in applying semi-supervised regres-
sion to tooth arrangement. 3) We incorporate dental arch priors into the frame-
work, utilizing arch width prediction to simplify tooth transformation learning
and enhance arrangement accuracy. 4) We validate our proposed approach on
a high-quality tooth arrangement dataset and achieve competitive results with
minimal labeled data.

2 Methods
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Fig. 1: The pipeline of our ITMatch framework.

2.1 Preliminary

In the automated tooth arrangement task, an input sample consists of a set of
point cloud representations of teeth, denoted as x = {xi ∈ R3×N |i ∈ L}, where
L is the set of tooth labels, and N denotes the number of sampled points per
tooth. Our objective is to train a network θ to regress the 6-DoF transformation
parameters T i for each tooth, such that the transformed teeth set T ∗ x closely
aligns with the expert-designed arrangement, where * denotes the application of
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a 6-DoF transformation. This can be formulated as the following optimization
problem:

min
θ

∑
i∈L

||T i ∗ xi − yi||22 (1)

where ∗ denotes the application of a 6-DoF transformation. Following prior
works, we parameterize the transformation T i using a 3D translation vector
and a unit quaternion to represent rotation. The network output is given by
T = θ(x) = (t, q).

2.2 Framework: ITMatch

Our semi-supervised tooth arrangement framework named ITMatch is illustrated
in Figure 1. The framework consists of two networks with identical architectures:
a student network θs and a teacher network θt. The teacher network is updated
using the Exponential Moving Average (EMA) of the student network at each
training iteration. A mini-batch D is divided into a labeled subset Dl and an
unlabeled subset Du. For labeled data xl with ground truth annotations yl,
the student network θs is trained using supervised loss Ls = Ls(xl, yl). For
unlabeled data xu, we first apply data augmentation with different intensity
levels, generating weakly augmented xw

u and strongly augmented xs
u versions.

To better accommodate the tooth arrangement task, we carefully design an
augmentation library, detailed in Table 2. Next, the student network and teacher
network generate predictions for the augmented samples:

ŷsu = θs(x
s
u) ∗ xs

u, ŷwu = θt(x
w
u ) ∗ xw

u (2)

After confidence evaluation, the teacher network’s reliable predictions are se-
lected as pseudo-labels for training the student network. This encourages the
network to learn consistent predictions under different perturbation levels. The
unsupervised loss is formulated as Lu = Lu(ŷ

s
u, hconf(ŷ

w
u )), where hconf(·) repre-

sents the confidence-based filtering function.

2.3 Arch Perception and Guidance

Tooth arrangement requires the network to simultaneously capture both local
tooth features and global dental arch structure, enabling it to determine target
positions and regress transformation parameters. However, under limited super-
vision, directly adopting conventional semi-supervised learning paradigms often
leads to low-quality pseudo-labels. In practice, aesthetically and functionally de-
sirable dental arches exhibit a smooth arch-like curve, and orthodontists often
rely on arch width as a guideline for arranging teeth.

To incorporate arch priors into the learning process, we introduce an addi-
tional auxiliary regressor to predict the control points of the dental arch. To
simplify data annotation, we use tooth centroids as control points instead of
manually annotated landmarks. Since the centroid naturally serves as the cen-
ter of transformation for each tooth, we can supervise the network’s translation
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predictions and use the estimated centroids to guide the final transformation re-
gression. By predicting centroid displacement instead of directly regressing full 6-
DoF transformations, we reduce the learning complexity, focusing the network on
estimating a reasonable arch width rather than complex rotational transforma-
tions. Specifically, we introduce an auxiliary regressor ϕ′, which shares a nearly
identical architecture with the primary regressor ϕ, but is only for predicting the
translation component t. The predicted centroid positions for all teeth are given
by m̂ = {m̂i ∈ R3|i ∈ L}, which can be computed as m̂ = t ∗ xm = ϕ′(f) ∗ xm,
where f represents point cloud features encoded by the feature encoder.

To supervise the centroid prediction, we apply L2 loss to both labeled and
unlabeled data:

Lm,s =
1

|L|
∑
i∈L

||m̂i
l −mi

l||22 Lm,u =
1

|L|
∑
i∈L

W i
conf||m̂s,i

u − m̂w,i
u ||22 (3)

Here, Wconf ∈ {0, 1}|L| is a confidence weighting vector, which will be detailed
in the next section. Using the estimated centroid positions, as illustrated in
Figure 1(b), we compute the directed distances xr from the centroids to the
median plane. These distances are then encoded into an arch width representa-
tion using a lightweight multi-layer perceptron (MLP). The arch features fr =
Linear(LeakyReLU(Linear(x_r))) are fused with the original feature f and
passed into ϕ to obtain the final transformation parameters, i,e, T = ϕ(f ⊕ fr),
where ⊕ denotes element-wise addition, and the specific implementation of fea-
ture fusion can be substituted as needed.

2.4 Iterative Confidence Evaluation

Assessing the confidence of pseudo-labels is a fundamental challenge in semi-
supervised regression. Inspired by iterative optimization methods, we propose
a more principled approach: evaluating pseudo-label confidence based on the
discrepancy between consecutive iterations. Given the network-predicted tooth
arrangement ŷ, we feed it back into the same network to obtain a second-stage
prediction ŷ′ = θ(ŷ) ∗ ŷ. Ideally, ŷ is expected to be close to the ground truth
y, i.e., ||ŷ − y|| < δ1. Additionally, if the network’s rearrangement of an already
well-aligned dentition is minimal, we have ||θ(y) ∗ y − y|| < δ2. Since θ(·) is a
continuous function, it is easy to derive that ||ŷ′ − ŷ|| < δ, where δ is also a
small deviation. Thus, by evaluating the difference between ŷ′ and ŷ , we can
assess how close ŷ is to the target arrangement y, which serves as an indicator
of pseudo-label confidence.

In practice, to reduce instability, we use the predicted centroids m̂w
u instead

of ŷwu for confidence estimation. Additionally, we incorporate a collision loss
Lc [3], to evaluate whether the relative positions of adjacent teeth (xi, xj) are
reasonable. This also serves as a complementary measure for assessing rotational
transformations. The confidence weighting matrix is defined as:

Wconf = 1(||m̂w
u − m̂w′

u ||2 < γ) · 1(Lc(ŷ
w
u ) < γc) (4)
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where Wconf is a binary vector of length |L|, γ and γc are hyperparameters, and
1(·) denotes the indicator function.

To reinforce the network’s understanding of well-aligned dentitions and pre-
vent mode collapse, we apply the second-stage iterative process to labeled data
as well. We introduce a regularization loss Lreg to minimize the discrepancy
between first- and second-stage centroid predictions:

Lreg = ||m̂l − m̂′
l||22 (5)

The final objective function is formulated as L = Ls + λuLu + λregLreg , where
λu and λreg are hyperparameters controlling the balance between different loss
terms. Beyond the specific loss functions discussed above, our framework sup-
ports arbitrary point cloud regression losses. The details of the loss functions
used in our implementation will be elaborated in Section 3.1.

3 Experiments

3.1 Experimental Settings

Loss Function and Training Details. We adopt the supervised loss func-
tions proposed in [3] and strictly follow its hyperparameter settings. The loss
components include: 1) Reconstruction Loss Li

r = ||T i ∗ xi − yi||22. 2) Trans-
formation Parameter Loss Li

p = ||qxi − qxi∗ ||, where qxi and qxi∗ indicate
the predicted quaternion and ground truth quaternion of teeth xi, respectively.
3) Feature Consistency Loss Lf . 4) Collision Loss Lc. The supervised and
unsupervised losses share the same formulation and can be unified as:

L{s,u} =
1

2
Lr,{s,u} + 20Lp,{s,u} + Lf,{s,u} + 2Lc,{s,u} +

1

2
Lm,{s,u} (6)

For optimization, we use SGD [11] with an initial learning rate of 1×10−3 and
weight decay set to 1×10−4. Training is conducted on a single NVIDIA RTX 3090
GPU. The batch size is set to 16, with equal proportions of labeled and unlabeled
data in each mini-batch. We sample N = 512 points from the point cloud data
of each tooth using the Farthest Point Sampling method. Regarding the value
of hyperparameters, we set γ = γc = 0.5, λreg = 0.1 by Grid-Search method.
λu(ti) = e−5(1−ti/tmax)

2

, where ti represents the current training iteration, and
tmax = 8000 is the maximum number of iterations [10].

Datasets and Evaluation Metrics. We conduct experiments on the dataset
proposed in [3], which consists of 909 cases from real-world orthodontic treatment
plans, each annotated with transformation parameters provided by experts. We
select its High-Quality dataset containing 544 cases, using 382, 54, and 108 cases
for training, validation, and testing, with the same data preprocessing.

For evaluation, we adopt metrics similar to [15,3]. Specifically, we compute
PCT@K, the percentage of predictions with errors below a threshold K, and use
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Table 1: Quantitative comparison of different settings.
Labeled Method Backbone MEpoint↓ AUC↑ Backbone MEpoint↓ AUC↑

5%
LS

TANet [18]
1.2791 63.60

DTAN [3]
1.2775 64.06

TA-MT 1.2187 66.45 1.1633 68.11
TA-CPS 1.2013 66.99 1.1544 68.83
ITMatch 1.0773 71.26 1.0589 71.85

10%
LS

TANet
1.1516 69.12

DTAN
1.1453 68.84

TA-MT 1.0882 70.14 1.0723 71.37
TA-CPS 1.1222 69.84 1.0547 71.99
ITMatch 0.9987 74.11 0.9775 74.82

20%
LS

TANet
1.0423 73.23

DTAN
0.9880 74.48

TA-MT 1.0049 73.69 0.9795 74.78
TA-CPS 1.0178 73.40 0.9730 74.99
ITMatch 0.9386 76.35 0.9170 77.02

100% FS TANet 0.8846 78.22 DTAN 0.7952 81.48

Fig. 2: Visualization results of different methods on 5% labeled setting.

it to construct a PCT curve with a maximum threshold of 3 mm and an interval
of 0.01 mm. The AUC (area under the PCT curve) quantifies overall accuracy,
while the mean point-wise distance error (MEpoint) (mm) measures the average
Euclidean distance between predicted and ground truth point clouds.

3.2 Results and Analysis

Quantitative Comparison. To quantitatively evaluate our method, we per-
formed experiments with proportions of data labeled 5% (19 cases), 10% (38
cases), and 20% (76 cases). Since no existing semi-supervised methods are specif-
ically designed for tooth arrangement, we adapt two classic paradigms from
semi-supervised learning and segmentation, Mean Teacher [13] and CPS [2],
to suit this task, resulting in TA-MT and TA-CPS, respectively. For fair com-
parisons, we keep the loss functions, data augmentation, and hyperparameters
identical across all methods. As shown in Table 1, thanks to the effective pseudo-
label filtering strategy, our method consistently achieves the highest accuracy on
different backbones and annotation ratios, significantly outperforming Limited
Supervision (LS) and approaching the performance of Fully Supervision (FS).
Visualization results are shown in Figure 2.
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Table 2: Data augmentation strate-
gies for weak-to-strong consistency
Method Weak Strong

Tooth Rotation [−30◦, 30◦] [−36◦, 36◦]
Translation(mm) N(0, 12) N(0, 1.22)
Resampling - p = 50%
Global Flipping - p = 25%

Table 3: Ablation study with 36
labeled cases(10%) on DTAN
TS CR ICE AG MEpoint↓ AUC↑
! 1.0723 71.37
! ! 1.0303 72.90
! ! ! 0.9948 74.20
! ! ! 1.0078 73.70
! ! ! ! 0.9775 74.82
w/o Lreg 1.0511 72.20
uncertainty filtering 1.0286 73.12
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Fig. 3: Analysis of the effect of Lreg on pseudo-label utilization (left) and empir-
ical evidence for the iterative confidence evaluation method (right).

Ablation studies. To validate the effectiveness of each component in our pro-
posed framework, we conduct ablation studies under the 10% labeled setting.
Starting from the Teacher-Student paradigm (TS), we progressively incorporate
Weak-to-Strong Consistency Regularization (CR), Iterative Confidence Evalu-
ation (ICE), and Arch Guidance (AG). Table 3 presents the contribution of
each component. Notably, removing Lreg, which plays a key role in ensuring the
validity of confidence estimation via iteration error, results in a significant perfor-
mance drop. Additionally, replacing ICE with an uncertainty-based pseudo-label
filtering approach also leads to degraded performance.

Furthermore, we empirically verify the effectiveness of ICE. As shown in
Figure 3, introducing Lreg enables the pseudo-label mask ratio to gradually de-
crease over training iterations, dynamically improving pseudo-label utilization.
The right plot further illustrates a negative correlation between centroid dis-
placement over iterations and prediction accuracy, providing strong empirical
evidence for the validity of our approach.

4 Conclusion

In this paper, we propose ITMatch, the first semi-supervised regression frame-
work tailored for tooth arrangement. Built upon a teacher-student paradigm,
ITMatch enhances the learning of unlabeled data through weak-to-strong con-
sistency regularization for point cloud inputs. To address the low confidence of
pseudo-labels in 3D transformation regression, we introduce an iterative confi-
dence evaluation mechanism inspired by optimization methods. Additionally, by



ITMatch: Arch-Guided Semi-Supervised Tooth Arrangement 9

incorporating arch-guided multi-task learning, we improve the robustness of the
regressor under limited supervision. Experimental results on real-world datasets
demonstrate that ITMatch achieves competitive performance. Future work will
further explore pseudo-label confidence evaluation for iterative regression tasks
and strategies to refine pseudo-labels and improve their utilization.
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