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Abstract. Gene expression profiling provides critical insights into cel-
lular heterogeneity, biological processes, and disease mechanisms. There
has been an increasing interest in computational approaches that can
predict gene expression directly from digitalized histopathology images.
While image foundation models have shown promise in a variety of
pathology downstream analysis, their performances on gene expression
prediction are still limited. Explicitly incorporating information from
the transcriptomic models can help image models address domain shift,
yet the fine-tuning and alignment of foundation models can be expen-
sive. In this work, we propose Parameter Efficient Knowledge trAns-
fer (PEKA), a novel framework that leverages Block-Affine Adaptation
and integrates knowledge distillation and structure alignment losses for
cross-modal knowledge transfer. We evaluated PEKA for gene expression
prediction using multiple spatial transcriptomics datasets (comprising
206,123 image tiles with matched gene expression profiles) that included
various types of tissue. PEKA achieved at least 5% performance improve-
ment over baseline foundation models while also outperforming alterna-
tive parameter-efficient fine-tuning strategies. We have released the code,
datasets and aligned models at Github to facilitate broader adoption and
further development for parameter efficient model alignment.

Keywords: Digital Pathology · Foundation Model · Spatial Transcrip-
tomics.

1 Introduction

Gene expression profiling provides critical insights into cellular heterogeneity,
biological processes, and disease mechanisms. However, single-cell RNA sequenc-
ing (scRNA-seq) [11] and spatial transcriptomics (ST) [13] remain costly, time-
consuming, and are not routinely implemented in clinical settings [4]. This has led
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to an increasing interest in computational approaches that can predict gene ex-
pression directly from digitalized histopathological images [18], which are widely
used in routine clinical workflows and often considered the gold standard for
diagnostics.

Early convolutional neural networks (CNN) and transformers for predicting
gene expression were trained on paired bulk RNA-seq gene expression matrix
and whole-slide images [8, 15]. Recently, pathology foundation models [1, 16,
17, 22], which employ self-supervised pre-training on large quantities of whole-
slide images (WSI), have been revolutionizing the field of digtial pathology and
demonstrated superior performance in various downstream tasks including gene
expression prediction.

Despite these advances, the embeddings extracted using image foundation
models predominantly capture morphological patterns, which may not opti-
mally align with the underlying biological signals. Apart from pathology find-
ings directly correlating with observable morphological features, for example,
mitosis and apoptosis [15], the vast majority of gene expression changes oc-
cur without manifesting visible alterations in cellular morphology. This means
histopathology-based foundation models may not naturally emphasize the intrin-
sic dimensions that can link to the transcriptomic domain. It can be considered
as an example of domain shift [3], which partly explains the performance bottle-
neck encountered when attempting to predict gene expression from histopathol-
ogy foundation model feature spaces. To overcome this limitation, we need to
explicitly incorporate information from the transcriptomic domain to guide the
adaptation of image features toward dimensions that are more relevant for gene
expression prediction.

Single-cell transcriptomic foundation models, such as scFoundation and scGPT
[2, 5], encode rich biological signals from the transcriptome and have emerged
as powerful tools for modeling gene expression data. To address the modality-
shift and enhance the molecular understanding, we introduce Parameter Efficient
Knowledge trAnsfer (PEKA), a novel framework that leverages Block-Affine
Adaptation [10] and integrates knowledge distillation and structure alignment
losses for cross-modal knowledge transfer. PEKA selectively amplifies dimensions
in the image feature space that are most relevant to transcriptomic information,
effectively bridging morphological features with their molecular underpinnings.

We evaluated PEKA in multiple datasets (comprising 206,123 image tiles
with matched gene expression profiles) that encompassed various types of tis-
sue, including breast, liver, kidney, and lung cancer subsets from the HEST
dataset [7]. Our experiments demonstrate the framework’s robustness and gen-
eralizability across different histological contexts. Notably, PEKA demonstrates
consistent performance gain over various baseline models, achieving at least
5% performance improvement while also outperforming alternative parameter-
efficient fine-tuning strategies in gene expression prediction tasks. We have re-
leased the code, related datasets, and aligned models at Github to facilitate
broader adoption and further development for parameter efficient model align-
ment.

https://github.com/RunningStone/PEKA.git
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2 Methods

2.1 Problem Formulation

Given a cell image Ximg ∈ RH×W×C and its corresponding gene expression data
Xseq ∈ RG, conventional approaches directly employ a pretrained foundation
model F (·) for prediction:

Fig. 1. PEKA framework for knowledge transfer between histopathology and tran-
scriptomic foundation models.

P (Xseq|Ximg) = h(F (Ximg)) (1)

where h(·) denotes a task-specific prediction head. However, this direct map-
ping often struggles to capture complex gene expression patterns because of the
significant domain discrepancy between the pretrained representation space and
the gene expression prediction task. We suggest that this limitation primarily
stems from the inherent modality gap between image representations and gene
expression patterns, as these models are predominantly optimized for general
visual understanding and may lack understanding of molecular features.

2.2 Parameter Efficient Knowledge trAnsfer(PEKA)

To address this challenge, we propose PEKA (Parameter Efficient Knowledge
trAnsfer), a plug-and-play framework that enhances the histopathology foun-
dation model’s capability in gene expression modeling through efficient knowl-
edge transfer and parameter adaptation (Fig. 1). From an information-theory
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perspective, our approach bridges the modality gap by maximizing mutual in-
formation between the embedding spaces of different models. PEKA achieves
this through two key components: knowledge transfer-based modality alignment
and parameter-efficient fine-tuning. Specifically, PEKA pipeline consists of two
stages: a Knowledge Transfer Stage where H&E image patches are processed
by a histopathology foundation model enhanced with parameter-efficient fine-
tuning (PEFT), while matched gene expression data is processed by a single-cell
foundation model. The training objective combines direct gene expression predic-
tion (LKD) with structural alignment of feature spaces (Lstruct), where cluster
relationships from transcriptomic embeddings guide the adaptation of image fea-
tures. In the Inference Stage, only the adapted histopathology model with the
PEFT projector is used to process image patches, followed by a 256-dimensional
PCA-Ridge regression model to predict gene expression profiles. This approach
enables efficient transfer of transcriptomic domain knowledge while modifying
around 5% of the original model parameters.

Knowledge Transfer with Parameter-Efficient Adaptation Given a pre-
trained gene expression encoder as the teacher model T (·) and the adapted image
encoder as the student model S(·), we formulate the knowledge transfer process
as follows:

S(Ximg) = F (Ximg; θF +∆W ) (2)

where θF represents the parameters of the Foundation Model and ∆W de-
notes the task-specific parameter updates. The teacher model T (·) provides
domain-specific supervision signals to guide the adaptation of the student model.
To achieve efficient adaptation while preserving the Foundation Model’s general
capabilities, we explore various parameter-efficient fine-tuning (PEFT) strate-
gies. The general form of parameter adaptation can be expressed as:

θadapted = θF +∆W = θF + (WgBg +Bg) (3)

where ∆W represents the adaptive weight matrix. To achieve efficient adapta-
tion while preserving structural information, we extend the original low rank
adaptation framework by applying block-wise grouping, where Wg ∈ Rn×m is
reshaped into blocks of size b× b. These blocks are then strategically grouped to
significantly reduce the number of trainable parameters without compromising
performance. This grouped block structure yields a closed-form solution equiva-
lent to the Bone formulation [10], which demonstrates superior performance in
bridging the modality gap while maintaining parameter efficiency.

2.3 Optimization target

The training objective of PEKA comprises three components: knowledge distil-
lation loss, structure alignment loss, and regularization term. The complete loss
function can be formulated as:
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Ltotal = λ1LKD + λ2Lstruct (4)

where λ1 and λ2 are weights balancing different losses. Each component serves
a specific purpose:

– Knowledge Distillation Loss (LKD): Facilitates the transfer of transcrip-
tomic domain knowledge from the teacher model to the student model:

LKD = DKL(softmax(T (Xseq)/τ) ∥ softmax(F (Ximg; θF +∆W )/τ)) (5)

where τ is the temperature parameter controlling the softness of probability
distributions.

– Structure Alignment Loss (Lstruct): Preserves the structural relation-
ships in gene expression space:

Lstruct = CrossEntropy(S(Ximg), l) (6)

where l = KNN(Xseq) generates pseudo-labels by applying k-nearest neigh-
bor clustering in the feature space from teacher model T (·). These structure-
aware labels capture the intrinsic neighborhood relationships in the tran-
scriptomic embedding space. By optimizing the cross-entropy loss between
the student model’s predictions and these pseudo-labels, we encourage the
image representations to preserve the structural topology of the teacher
model T (·).

This training approach ensures effective knowledge transfer while maintaining
structural consistency between modalities. In fact, the knowledge distillation pro-
cess of PEKA results a maximization process of the mutual information between
image and transcriptomic domain. Single cell large language models (scLLMs)
serve as ideal teacher models for PEKA due to their comprehensive understand-
ing of gene expression patterns across diverse cellular contexts. Among available
scLLMs, we selected scFoundation [5] as our teacher model due to its exten-
sive pretraining on over 50 million human single-cell transcriptomic profiles and
shows good performance in multiple downstream tasks. The embeddings from
scFoundation serve as supervision signals during the knowledge distillation pro-
cess, guiding our image-based student model to learn meaningful representations
that align with biologically relevant gene expression patterns. By distilling knowl-
edge from scFoundation, our approach benefits from its extensive pre-training
while adapting this knowledge to the spatial context provided by the imaging
modality.

3 Experiments and Results

3.1 Dataset Descriptions

The HEST dataset contains 1,229 whole slide images (WSI) with paired spatial
transcriptomic (ST) profiles [7]. To mitigate the effect of different ST technolo-
gies and types of diseases, and ensure a clean comparison, we selected subsets
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from the HEST dataset to construct four different benchmarking datasets. The
datasets contain Visium ST data of Homo Sapiens with breast cancer (n=30,414
pairs of image tiles and gene expression data), kidney cancer (n=73,813), liver
cancer (n=37,168), and lung cancer (n=64,728), respectively. We applied 5-fold
cross-validation to compare the performance of our model with other methods.

Training Settings We applied the same quality control steps of scFounda-
tion to filter out low-quality and damaged cells [5]. Following the designs in
HEST, we calculated the top 50 highly-variable-genes (HVG) in each dataset
as targets for evaluating models, and employed a 256-dimensional PCA fol-
lowed by a ridge regression classifier to predict gene expressions from founda-
tion model (FM) embeddings. We compared our PEKA model against backbone
FMs including Resnet-50 trained on ImageNet [21], CtransPath [20], UNI [1]
and Hoptimous0 [14]. We also compared our method with different strategies
for parameter-efficient finetuning, including Low-Rank Adaptation (LoRA) [6],
AdaLoRA [23].

During the Knowledge Transfer Stage of PEKA, the adapter parameters and
MLP weights are updated while keeping the backbone frozen. In the inference
stage, we freeze the entire adapted model (backbone with PEFT) and only train
a PCA-Ridge regression head for gene expression prediction.

Evaluation metric Pearson correlation coefficient (PCC) is used as the eval-
uation metric.

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(7)

where, x and y are the predicted and ground truth gene expression values re-
spectively, x̄ and ȳ are their respective means, and n is the total number of
samples.

Hyper parameters We ran knowledge transfer experiments for 50 epochs,
using an Adam optimizer with a learning rate of 0.0001. We used r = 256,
α = 32, and a dropout rate of 0.1 for the low-rank adaptation of the models.
We set λ1 = λ2 = 0.5 for the alignment of models. The backbone we selected:
H-optimus-0 (H0) is a large foundation model, which includes 1.1B paramerters.
Using PEKA, we achieve parameter-efficient and data-efficient knowledge trans-
fer by only tuning around 5% of the parameters in the imaging backbone. The
alignment takes 12 GPU hours on a single V100 GPU.

Knowledge transfer results We trained our models by transfering knowledge
from a scFoundation model (teacher) to a H0 image foundation model (student)
using our parameter efficient knowledge transfer (PEKA) approach.

We compared our model with other foundation models in the four datasets
derived from HEST. Our method significantly outperforms baseline models, with
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Table 1. PEKA significantly outperforms Resnet, CtransPath, UNI and H0 in Pearson
correlation (PCC) for gene expression prediction between the imaging and expression
embedding spaces.

Model HEST-Breast HEST-Kidney HEST-Liver HEST-Lung
ResNet-50 0.554 0.587 0.554 0.696
CTransPath 0.424 0.410 0.489 0.592
UNI 0.617 0.673 0.576 0.708
Hoptimous0 0.624 0.698 0.594 0.720
PEKA (ours) 0.698 0.755 0.654 0.774

Fig. 2. PCC of top 50 highly-variable-genes in the breast cancer dataset.
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a 5-7% absolute increase in PCC compared to the second-best performing model
(Table. 1). Surprisingly, CTransPath, which is pretrained on a large cohort
of pathology images, has much lower PCC compared to Resnet-50 pretrained
on ImageNet. This observation shows the potential risk of foundation models
overfitting to one modality, and highlights the importance bridging different
modalities with knowledge transfer algorithms. Using the PCC of top-50 highly
variable genes in the HEST-Breast dataset as an example, we show that PEKA
improves gene expression prediction for all of the genes by a large margin (Fig.
2). Concatenating the embeddings of the aligned model with the embeddings
of the pathology image foundation model also consistently improved prediction
accuracy, suggesting that the aligned model captured extra information comple-
mentary to imaging through the knowledge transfer process.

Table 2. PEKA consistently outperforms other parameter efficient fine-tuning methods
correlation coefficient across backbones and datasets. Values in the table are Pearson
correlation coefficients between predicted gene expressions and ground truth.

Backbone UNI Hoptimus0
Method None LoRA AdaLoRA PEKA None LoRA AdaLoRA PEKA
Breast 0.617 0.668 0.643 0.688 0.624 0.687 0.658 0.698
Kidney 0.673 0.711 0.686 0.729 0.698 0.734 0.715 0.755
Liver 0.576 0.626 0.608 0.654 0.594 0.601 0.586 0.640
Lung 0.708 0.752 0.734 0.774 0.720 0.738 0.716 0.774

Comparison with other PEFT methods We compared our method with
three other settings of parameter-efficient fine-tuning (PEFT) including None
(No fine-tuning), LoRA (Low Rank Adaptation) [6] and AdaLoRA [23]. In all
four datasets, we found that all PEFT strategies significantly improves PCC of
gene expressions compared to None. Our approach always provides the largest
performance gain, with LoRA being the second.

4 Conclusions

In conclusion, we propose PEKA, a parameter-efficient knowledge transfer work-
flow for aligning foundation models trained on different modalities. Foundation
models fine-tuned using PEKA achieved state-of-the-art performance in pre-
dicting gene expressions from pathology image tiles across four different tis-
sue types. From our results, PEKA can effectively bridge the modality gap be-
tween histopathology images and gene expression data, enabling more accurate
molecular predictions from morphological features. We believe PEKA and the
aligned model will serve as powerful tools for researchers and clinicians to ex-
tract valuable transcriptomic insights from routinely available histopathology
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images. Furthermore, PEKA provides a strong baseline for future advancements
in cross-modal knowledge transfer, particularly in the medical domain, where
paired multi-modal data are scarce. In the future, we plan to leverage the data-
efficiency and parameter-efficiency of PEKA to align other modalities such as
proteomics [12], metabolomics [9], or epigenomics [19] across cancer types and
evaluate its utility in precision oncology applications, for example cancer sub-
typing and survival analysis.
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