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Abstract. Multiplex tissue imaging (MTI) is a powerful tool in can-
cer research, allowing spatially resolved, single-cell phenotype analysis.
However, MTI platforms face challenges such as high costs, tissue loss,
lengthy acquisition times, and complex analysis of large, multichannel
images with batch effects. To address these challenges, we propose a
novel computational method to model the interactions between dozens
of panel markers and Hematoxylin & Eosin (H&E) staining, enabling
in-silico generation of marker stains. This approach reduces the reliance
on experimentally measured markers, bridging low-cost H&E data with
MTT’s high-content information. Our approach uses a two-stage frame-
work for channel-wise bioimage synthesis: first, vector quantization learns
a visual token vocabulary, then a bidirectional transformer infers miss-
ing markers through masked language modeling. Comprehensive bench-
marking across different MTI platforms and tissue types demonstrates
the effectiveness of our method in improving marker prediction while
maintaining biological relevance. This advance makes high-dimensional
multiplex tissue imaging more accessible and scalable, supporting deeper
insights and potential clinical applications in cancer research.

Keywords: Multiplex Tissue Imaging - Image Generation - Multimodal
Integration.

1 Introduction

Multiplex tissue imaging (MTT) [1,11, 16, 17] is an emerging powerful technology
in cancer research, enabling the simultaneous measurement of multiple proteins
at single-cell resolution while preserving spatial context. Large consortiums such
as HuBMAP [7] and HTAN [22] have widely adopted cellular “atlases” to study
cell phenotypes and the tumor microenvironment, with the potential to improve
patient outcomes and identify novel therapeutic targets. Despite its promise,
MTT faces challenges that limit clinical feasibility, including tissue degradation
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from iterative staining cycles, long acquisition times, and high costs [17,31].
To address these limitations, we propose a computational model that identifies
redundant markers that can be removed from the experimental assay and instead
predicted in-silico, thereby streamlining the MTT workflow.

Several approaches have been proposed for imputing markers from MTI [24,
25,28, 31]. Ternes et al. [28] introduced a multi-encoder variational autoencoder
[27] to reconstruct the full multichannel images from a limited subset of chan-
nels. Sims et al. [24] improved this with a transfomer-based masked autoencoder
(MAE) [13], enhancing predictive accuracy with reduced panels and enabling
any-to-any mapping between marker channel sets, thus simplifying training and
improving model flexibility. Another approach, 7-UP, leverages cellular morphol-
ogy and a few antibody stains to generate high-dimensional immunofluorescence
images [31]. Collectively, these methods advance computational marker imputa-
tion, enhancing the scalability and accessibility of multiplex tissue imaging.

Beyond marker imputation, researchers have explored predicting immunoflu-
orescence (IF) stains from Hematoxylin and Eosin (H&E)[4, 5, 23, 30]. However,
existing H&E-to-IF models face challenges as image-to-image translation is typ-
ically limited to a few markers. This limitation arises because paired H&E and
IF datasets are usually obtained from adjacent tissue sections, separated by
approximately 5 microns, due to the tissue degradation issue associated with
MTT assays such as CyCIF[17]. Emerging MTT platforms, such as the RareCyte
Orion system [16], overcome this limitation by enabling the acquisition of up to
19 IF markers in a single round, preserving tissue integrity for subsequent H&E
staining on the same section.

In this paper, we focus on MTT imputation through multimodal integration
(i.e., MTI and H&E) to enhance marker prediction accuracy. Our key contribu-
tions include:

— Introducing a two-stage framework for channel-wise bioimage synthesis, where
a channel-independent visual token vocabulary is learned first, followed by a
bidirectional transformer for inter-channel relationships, enhancing biomarker
image synthesis.

— Identifying an optimally reduced marker set and improving prediction pre-
cision by integrating same-slide MTI data and H&E for colorectal cancer, as
well as high-plex MTI for prostate cancer.

2 Related Work

2.1 Vector Quantization

With the increasing adoption of the transformer architecture [29], a key distinc-
tion between its applications in computer vision and natural language processing
lies in the nature of input representation. While text is inherently discrete due to
tokenization, visual data is typically continuous, as seen in Vision Transformer
(ViT) [9]. To bridge this gap, Oord et al. [19] proposed the Vector Quantized
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Variational Autoencoder (VQ-VAE), which discretizes images by mapping latent
vectors from the encoder to the nearest entries in a fixed-size codebook. The re-
sulting discrete indices are then used by the decoder for image reconstruction.
Building on this approach, Esser et al. [10] proposed VQGAN, an improved ver-
sion of VQ-VAE that incorporates perceptual and adversarial losses to improve
reconstruction fidelity.

Beyond facilitating language modeling-based approaches, discretizing visual
data is also crucial for computational efficiency as directly modeling images in
pixel space is highly inefficient. Instead, decomposing image synthesis tasks into
distinct visual and semantic compression stages has been shown to significantly
improve performance [32].

2.2 Masked Generative Modeling

Most generative transformer models adopt the decoder-only, causal attention
masking paradigm popularized by GPT [20], where tokens are decoded sequen-
tially, one by one. However, this approach is neither optimal nor efficient for
image generation due to the absence of an inherent sequential structure in im-
ages [6, 21, 32]. To address this, masked generative modeling has been introduced
to remove the inductive biases associated with text sequences. Chang et al. 6]
proposed MaskGIT, which replaces causal attention with a bidirectional trans-
former [8], and predicts all tokens simultaneously. To refine the generation pro-
cess, multiple inference steps are performed, where only the most confidently
predicted tokens are retained, while others are re-masked and re-predicted. This
parallelized approach significantly accelerates image synthesis compared to au-
toregressive methods and has also been shown to outperform diffusion models
[32].

Given the growing interest in masked generative modeling, extending this ap-
proach to multichannel microscopy imaging presents a compelling opportunity.
While transformers have been explored for feature extraction in microscopy im-
age 2,3, 14], their potential for generative tasks remains largely underexplored
[24].

3 Methods

Building on masked token prediction for image synthesis [6, 15, 32| and masked
image modeling for MTT channel imputation [14,24], we propose a two-stage
pipeline as illustrated in Figure 1. First, multichannel images are transformed
into discrete “visual tokens” (middle). Second, missing tokens are imputed to
reconstruct absent MTI channels (right).

3.1 Channel Tokenizer

To transform single-cell MTT images into a sequence of discrete tokens, we adopt
the MaskGIT approach [6] using the original VQGAN implementation [10] with
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Fig. 1. Framework for modeling MTI and H&E as visual language. Left:
input consists of 64x64 single-channel cell crops from whole slide images. Middle:
VQGAN discretizes image channels into 16-integer sequences, treating each channel
as a segment like BERT [8]. Right: a Masked Language Model predicts discretized
masked channels.

a codebook size of 256. For channel imputation, our goal is to tokenize an image
x; € RTXWxCi guch that we can later input an image with a reduced number
of channels, C, where C; > C}. To address this discrepancy, we treat x; as C;
single channel images in R”*W . This approach ensures a consistent tokenizer
across varying channel numbers without the need for placeholder channels.

By treating each channel independently, the tokenizer learns morphology-
and intensity-based features that are not specific to any single IF marker. This
shared codebook strategy enhances the model’s ability to capture meaningful
patterns and relationships among IF markers more effectively.

3.2 Masked Language Model and Panel Selection

For masked language modeling, we follow the BERT [8] setup, specifically using
the RoOBERTA configuration from HuggingFace [18]. A single multichannel image
is tokenized using our pretrained VQGAN, generating a sequence of length C -
D%,Q, where C is the number of input image channels, and Dvyq represents the
dimension of the quantized input image, defined as D/ f, with D as the original
input image dimension and f as the downscaling factor.

To maintain the analogy with language modeling, we treat the input sequence
as a text passage, where each channel functions as a separate sentence. Therefore,
we apply the same three embedding layers as in the original BERT implemen-
tation [8]: token embeddings, position embeddings, and segment embeddings, as
illustrated in Figure 1 (middle).

To determine the optimal set of input markers, we utilize the Iterative Panel
Selection (IPS) algorithm from [24]. This greedy selection method prioritizes the
“most informative” marker first, specifically the channel ¢; that best predicts
the remaining channels C'\¢; when used as a model input. The IPS procedure is
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formally defined as follows:

Panel; = {cpap1}, Panel, = Panel,,_1 U{argmax f(Panel,_1 U{c})},

5 5 (1)
f(Panely) = ps(X, X) where X = g(X, Panely; 0).

where we set the lst-marker panel, Panel; to DAPI, as it stains the nuclei
and provides essential cell location information. Next, we iterate through the
remaining n — 1 markers to identify the marker that, when included with DAPI,
yields the highest Spearman correlation (ps) between the real and predicted
marker intensities using the imputation model g with parameters 6.

Building on this approach, we introduce an additional heuristic that prior-
itizes the selection of the marker “hardest to predict”, as defined in Equation
(2). Instead of starting with a fixed 1-marker panel and incrementally adding
markers to form an n — 1 panel, we begin with the full panel of n markers and
progressively remove the easiest-to-predict markers until only the most challeng-
ing marker remains. As in the original IPS, we initialize Panel; as {cpap1}. We
refer to this approach as reverse-IPS (rIPS).

Panel,,—1 = Panel, \ {arg mcax(f(Paneln \ {e})} (2)

While both heuristics perform similarly, we find that rIPS consistently achieves
higher performance when using a low amount of input markers.

4 Experimental Data

We evaluate our models on two datasets: a 17-marker Colorectal Cancer (CRC)
dataset with same-slide H&E staining from Lin et al. [16] and a 40-marker
prostate cancer dataset.

For CRC, we split by whole slide image (WSI), using 9 WSIs for training and
1 for testing, covering ~10.5 million cells with diverse phenotypes. This ensures
the model generalizes across tissue regions while avoiding slide-specific biases.
The prostate cancer dataset is split by batch (6 for training, 1 for testing) to
assess robustness against staining and sample-handling variations, comprising
~1.6 million cells. Cell segmentation is performed using Mesmer [12], followed
by cropping 32 x 32 pixel image patches on each cell to maintain consistent image
size and capture the local microenvironment.

For H&E images, we apply color deconvolution to separate the hematoxylin
and eosin channels, enhancing the model’s ability to distinguish nuclear and cy-
toplasmic structures. The resulting two-channel images are treated as additional
immunofluorescence (IF) markers in tokenizer training set. To assess potential
information loss, we also train a separate tokenizer for H&FE using the original
RGB format. This follows a multimodal tokenization approach [26], where IF
and H&E images map to disjoint token subsets within the model’s token vo-
cabulary (i.e., tokens 0-255 for IF, 256-512 for H&E if our vocabulary size is
512).
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Table 1. Comparison of model configurations. Generative performance is evalu-
ated with 3,6,9, and 12 randomly selected IF markers (H&E adds two channels; “L.” de-
notes a larger model). Top 5 rows show the proposed two-stage model (VQGAN+BERT
variants), and bottom 2 rows show MAE. Results are averaged over 10 runs with 10,000
unseen cells; bolded values indicate top performance.

Model Spearman Correlation SSIM

3 markers | 6 markers | 9 markers | 12 markers | 3 markers | 6 markers | 9 markers |12 markers

IF only 0.6040.04 | 0.73%0.03 | 0.8240.02 | 0.8440.04 | 0.6340.01 | 0.69£0.01 | 0.74£0.01 |0.7540.01
IF only w/ full ch. mask | 0.6940.03 | 0.7940.02 | 0.8640.02 | 0.87+0.03 | 0.6440.01 | 0.70£0.01 | 0.74£0.01 |0.76+0.01
IF only w/ full ch. mask L | 0.7040.03 | 0.8040.02 | 0.86+0.02 | 0.87+0.03 | 0.6540.01 | 0.70+0.01 | 0.74+0.01 |0.7640.01

IF+H&E (deconvolved) 0.7240.03 | 0.80+0.02 | 0.8640.02 | 0.87+0.03 | 0.73+0.01 | 0.78+0.01 | 0.81+0.01 |0.83+0.01

IF+H&E (RGB) 0.734+0.02 | 0.81+0.02 | 0.87+0.02 | 0.88+0.03 | 0.6940.01 | 0.74+0.01 | 0.76+0.00 [0.7840.01
MAE [24] 0.64+£0.03 | 0.78%+0.02 | 0.8640.02 | 0.87+0.03 | 0.67+0.01 | 0.734+0.01 | 0.7740.03 [0.7740.02
MAE L 0.66+0.03 | 0.78%0.03 | 0.8540.02 | 0.87+0.04 | 0.68+0.02 | 0.7340.01 | 0.7840.02 [0.7740.03
5 Results

Model Configurations and Ablations To optimize model configuration, we
evaluate marker imputation across 10 different random marker orders to assess
the model’s robustness to marker ordering (Table 1). Our goal is to determine
configurations that effectively capture marker expression intensity and struc-
tural information while maintaining flexibility in imputing missing markers. Our
BERT models use a default setup (12 layers, 12 heads, 768 embedding) and a
larger variant (24 layers, 16 heads, 1024 embedding). For MAE, we follow Sims
et al. [24] with 8 layers encoder/decoder (6 heads, and 1024 embedding) and
train a larger MAE of comparable size to the larger BERT model (16 layers, 12
heads, and 1024 embedding).

To quantify how well the predicted image channels capture marker expression
intensity within each cell, we measure the Spearman correlation between real and
predicted mean intensity within the center cell region. Models are tested with 3,
6, 9, and 12 random marker subsets. Structural integrity is evaluated using the
Structural Similarity Index Measure (SSIM).

Our results show that the proposed two-stage model significantly outperforms
the vanilla MAE model from Sims et al. [24], particularly when fewer input
markers are available. This improvement stems from our full-channel masking
strategy, where a random number of channels, k, are entirely masked from the full
set of N, channels during training. In this setup, all tokens within each masked
channel (D%Q) are masked, forcing the model to infer missing information from
the unmasked channels. Unlike partial masking, which selects k tokens across all
N, - D%,Q tokens, full-channel masking enhances the model’s ability to capture
complex marker relationships, improving imputation performance with limited
input markers.
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Table 2. Quantitative comparison of optimally reduced panels for CRC.
Generative performance is evaluated using 3,6,9, and 12 IF markers selected via iter-
ative and reverse iterative panel selection on 10,000 training cells. The table presents
inference results on 10,000 test cells.

Model Panel Spearman Correlation
3 markers 6 markers 9 markers 12 markers
IF+H&E Z=256 w/ full ch. mask|IPS 0.75 0.87 0.89 0.93
IF+H&E Z=256 w/ full ch. mask|rIPS 0.77 0.84 0.88 0.90
MAE [24] IPS 0.68 0.79 0.86 0.89
MAE rIPS 0.69 0.80 0.86 0.91

Additionally, incorporating H&E channels as additional inputs further en-
hances generation quality by providing structural context. These channels com-
plement MTT markers, helping the model learn shared spatial features and pro-
duce more realistic imputed channels.

Optimally Reduced Panel Selection We use Iterative Panel Selection (IPS)
and reverse-IPS (rIPS) with our top-performing two-stage model to identify
optimal marker ordering.

Table 2 shows results on the CRC dataset, where IPS and rIPS are applied
to 10,000 training cells and evaluated on 10,000 test cells. The optimally reduced
panels enhance marker imputation, with our model achieving higher Spearman
correlation than MAE model. These heuristics reveal a key trade-off: rIPS yields
the best 3-marker panel by selecting distinctive, hard-to-predict markers, making
it ideal for minimal yet informative features. IPS, on the other hand, forms
the best 12-marker panel by removing redundancy and maximizing predictive
performance, making it preferable for broader accuracy. For prostate cancer, our
model outperforms vanilla MAE, achieving Spearman correlations of 0.80, 0.86,
and 0.93 with 10, 20, and 30 markers as input, improving by 0.01, 0.03, and 0.05,
respectively.

Marker imputation and relationships Figure 2 illustrates model-generated
MTT images, where 14 channels are predicted from four inputs: DAPI, FOXP3,
PD-1, and H&E. Selected via rIPS, these markers improved Spearman correla-
tion by 0.04 over random selection with three inputs. This highlights the model’s
ability to infer missing marker patterns while adapting to cell types. The top-left
panel shows an Ecad* /PanCK™ tumor cell, while the top-right features a CD8™
T cell (CD3et/CD8a™). Figure 2 bottom panel shows an example of a tumor
cell in prostate cancer where 34 markers are imputed from six markers as input.

To evaluate how well our model captures biological marker relationships, we
compute Cosine similarity between marker embeddings (Figure 3). We find that
the baseline MAE (left) captures relatively weak interactions between different
biomarkers compared to our VQGAN+BERT model (middle). The increase in
positive similarity (red) achieved by our new approach implies that relationships
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Fig. 2. Generation examples using combined H&E and MTI input. The Left-
most column shows input channels (IF markers and/or H&E staining), while the right
columns compare ground truth (top row) with predicted image channels (bottom row).
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Fig. 3. Effect of tokenization on embedding similarities.: Left: cosine similari-
ties from the MAE [24] on the CRC dataset. Middle: tokenized language model embed-
ding. Right: Tokenized model with H&E. Pre-tokenizing enhances biologically plausible
marker relationships.

are more easily identifiable in latent token space than in pixel space. Overall,
the proposed model, particularly with H&E, offers a more biologically consistent
representation, enhancing its ability to infer marker interactions and interpret
sub-compartmental, spatial, and morphological features in MTT.

6 Conclusion

We propose a framework for channel-wise image synthesis of highly multiplex
tissue images using vector quantization and bidirectional transformers. This is
the first scalable approach to synthesize MTI marker images while integrating
MTTI and H&E modalities. Our benchmark advances computational biomarker
prediction, reducing experimental costs and enabling large-scale spatial tissue
analysis.
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