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Abstract. Multiphase contrast-enhanced computed tomography (CT)
is clinically significant in providing vascular structure and lesion phase-
specific enhancements. Yet, its clinical utility is constrained by intrinsic
contrast agent-associated risks (e.g., nephrotoxicity, allergic reactions)
and multiphase cumulative radiation exposure. To tackle this, synthe-
sizing contrast-enhanced CT (CECT) using non-contrast CT (NCCT)
offers a potential alternative. However, achieving a high-quality synthe-
sis of multiphase CECT remains challenging due to the contrast agent
(CA)-induced complex contrast flow dynamics and the specific variations
across phases. Therefore, this paper proposes a contrast flow pattern and
cross-phase specificity-aware diffusion model for NCCT-to-multiphase
CECT synthesis. Specifically, a contrast flow pattern learning mecha-
nism is integrated into the conditional diffusion model, which enables
orderly phase transitions while ensuring anatomically and temporally co-
herent enhancement synthesis. Furthermore, a phase distinction network
is introduced to align cross-phase specificity features with the contrast
features in synthesized CECT images. Experimental results on multi-
center abdomen CT datasets have demonstrated the superiority of our
method compared to state-of-the-art methods.
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· Diffusion model

1 Introduction

Multiphase contrast-enhanced computed tomography (CECT) provides critical
diagnostic value through vascular characterization and lesion-specific enhance-
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ment patterns[1, 2]. Unfortunately, the clinical application of CECT faces limita-
tions due to contraindications and patient-specific factors. The use of iodinated
contrast agents (CA) for CECT scans carries potential risks such as severe aller-
gic reactions and nephrotoxicity[3]. Moreover, multiphase CECT protocols lead
to cumulative radiation exposure, raising concerns for patients requiring repeated
imaging. On the contrary, non-contrast computed tomography (NCCT) has the
advantage of lower radiation exposure and avoids the potential adverse effects
of CA. Nevertheless, the poor visibility of abnormalities and organ contours in
NCCT scans increases the diagnostic difficulty for radiologists. Therefore, devel-
oping a CA-free synthesis framework for generating diagnostic-quality images is
of significant promise.

With recent advances in deep learning, contrast-enhanced synthesis from
NCCT images has emerged as a promising alternative to real CECT scans [4–8].
Pang et al. [9] developed a generative adversarial network (GAN)-based frame-
work for chest NCCT-to-CECT synthesis and applied it in pulmonary vessel
segmentation. Zhong et al. [10] presented CKAP-Net to synthesize late arterial
phase CECT images for multi-organ segmentation in NCCT images. Unlike these
specific single-phase synthesis methods, Uhm et al. [11] proposed DiagnosisGAN
for completing any missing CT phase based on other phases. It is worth not-
ing that numerous current studies focus on synthesizing specific phases, while
only a few can synthesize multiphase. These methods fail without exception in
CA-free situations, in which all contrast-enhanced phases are absent. To address
this, Liu et al. [12] pioneered multiphase CECT synthesis, including arterial,
portal, and delayed phases. The proposed dual-path GAN enables NCCT-to-
multiphase CECT synthesis by preserving the texture and enhancing the pixel
intensity. Zhong et al. [13] introduce united multi-task learning for joint synthe-
sis and deformable registration of abdominal CECT, which synthesizes CECT
images with acceptable quality on multiphase data. However, these methods
treat each phase independently, neglecting the inherent temporal dependencies
and inter-phase relationships. This isolated approach can lead to inconsistencies
in synthesized images, such as anatomical misalignments or unrealistic enhance-
ment patterns, thereby compromising diagnostic reliability.

The primary challenge in synthesizing multiphase CECT images lies in accu-
rately modeling the dynamic distribution of contrast agents (CA) across different
phases. Such a CA flow pattern contains abundant diagnostic relative informa-
tion. Existing methods struggle to model the temporal coherence of CA flow
across phases, leading to anatomically inconsistent enhancement (e.g., arterial-
phase hyperenhancement misaligned with portal-phase washout). Moreover, an-
other challenge of multiphase CECT synthesis is the lack of cross-phase difference
CA knowledge learning. In the clinic, each phase captures distinct temporal and
spatial patterns of CA enhancement, which are critical for precise diagnosis.

To tackle the aforementioned issues and utilize the CA knowledge, we propose
a contrast flow pattern and cross-phase specificity-aware diffusion model (CFPS-
Diff) for NCCT-to-multiphase CECT synthesis. Specifically, contrast flow pat-
tern learning (CFPL) is integrated into the conditional diffusion model, which en-
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ables any-to-follow phase orderly transitions. The CFPL facilitates the dynamic
distribution of CA in the synthesis of multiphase CECT images, thereby ensur-
ing anatomically and temporally coherent enhancement synthesis. Furthermore,
cross-phase specificity learning (CPSL) was realized through the designed phase
distinction network to align cross-phase specificity features with the contrast fea-
tures in synthesized CECT images, facilitating cross-phase enhancement synthe-
sis. We conduct experiments on multi-center clinical datasets, comprising NCCT
and triple-phase CECT, demonstrating the superior performance of the proposed
CFPS-Diff in synthesizing CECT images compared with state-of-the-art (SOTA)
methods. Our code is available at https://github.com/Kindyz/CFPS-Diff.git.

2 Method

Problem Formulation. In the training stage, a set of multiphase data, namely
NCCT, arterial phase (AP), venous phase (VP), and delayed phase (DP) CECT
volumes, are given, respectively. The entire dataset is denoted by S = {(Xi, Y

A
i ,

Y V
i , Y D

i ) | i = 1, 2, . . . , N} where i denotes the i− th volume. Correspondingly,
we assign phase labels to all volumes in S according to their index, forming
a set {ξi} ∈ {0, 1, 2, 3}. In the testing stage, solely the NCCT volume Xi is
provided, and the objective is to synthesize other triple phase CECT volumes
{(Y A

i , Y V
i , Y D

i )}.

Conditional Diffusion Model. Diffusion models have demonstrated excep-
tional capabilities in generating high-quality medical images by modeling com-
plex data distributions through iterative denoising processes [14]. This iterative
denoising mechanism intrinsically shares inherent similarities with CA-induced
enhancement evolution. Therefore, we construct CFPS-Diff based on the de-
noising diffusion probabilistic model (DDPM) [15], aiming to effectively model
the temporal dynamics of CA distribution in multiphase CECT synthesis. The
forward process starts from the initial target phase CT volume x0 ∼ S and pro-
gressively adds Gaussian noise in t timesteps according to a predefined variance
schedule {β} and produces noise target phase CT volume xt. Letting αt := 1−βt

and ᾱt =
∏t

i=1, each xt can be directly sampled via the closed-form expression:

(Forward): xt =
√
ᾱtx0 +

√
1− ᾱt, ϵ ∼ N (0, σ2I),

(Reverse): xt−1 =
1

√
αt

((
1− βt

1− ᾱt

)
xt +

√
ᾱtβ

1− ᾱt
uθ (xt, xc, wflow, t)

)
+ σtϵ, xc ∼ S

(1)

where xc represents the CT volume of the conditional phase, uθ represents the
image generator to predict the target phase CT volume directly, and wflow

denotes the phase sequential embedding vector.
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Fig. 1. The overview of our proposed CFPS-Diff. (a) Contrast Flow Pattern (CFP)-
Aware Learning. (b) Cross-Phase Specificity (CPS)-Aware Learning.

Contrast Flow Pattern Learning (CFPL). Our proposed CFPL is designed
to tackle the challenge of modeling dynamic contrast flow in multiphase CT
synthesis. As shown in Fig. 1(a), the CFPL introduces the guidance of order
phase embedding to synthesize the target phase CT volume. In particular, we
randomly generate a sample pair (ξpre, ξpost) using a time-constrained sequential
sampling formula:

ξpre ∼ U(0, 3), ξpost ∼ U{ξpre, ξpre + 1, . . . , 3} (2)

where ξpre and ξpost are the labels of the source phase and target phase, re-
spectively. This sequential sampling strategy enforces ξpre ≤ ξpost to reflect the
temporal monotonicity of the contrast flow pattern. Following, the phase se-
quential embedding module Ωflow is used to embed the phase flow and fusion
with timestep-conditional representation e in the diffusion model and modulate
feature maps m in each encoder and decoder layer of uθ to mflow. The process
is formulated as:

wflow = Ωflow (ξpre, ξpost, et)

m′ = (m⊕Mshift (wflow))⊙Mscale (wflow)
(3)

where e is a timestep-conditional representation in the diffusion model, Mshift
and Mscale denote the embedding layers for obtaining shift and scale vectors,
respectively, and ⊕ and ⊙ present element-wise addition and multiplication oper-
ations, respectively. The loss function is a weighted combination of mean absolute
error (MAE) loss and wavelet loss[16] and formalized as:

Lsyn−a = λ1|x̂0 − x0|+ λ2Lwavelet(x̂0, x0) (4)
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where λ1 and λ2 are the weights for the MAE loss and the wavelet loss.

Cross-Phase Specificity Learning (CPSL). Radiologists major rely on the
differential enhancement observed across multiple phases of contrast-enhanced
CT to detect abnormalities and differentiate disease entities. To reinforce this
critical specificity synthesis, we proposed the CPSL to align the synthesis en-
hancement features with phase distinction features (shown in Fig.1. (b)). The
phase distinction network, denoted as D is tasked with contrast difference ex-
traction and phase classification on real multiphase volumes. In each training
iteration, the synthesis and classification networks are optimized simultaneously
and the multi-scale enhancement features learned by the extractor Fd in D were
used to constrain decoder Fu in uθ. The loss functions are depicted as:

Lalig =

N∑
l=1

|Fu,l (xt, xc, wflow, t)− Fd,l (x0)| , (5)

where l denotes the l−th feature layer. Inspired by [17], a class distance weighted
cross-entropy loss (CDW-Loss) is introduced to boost the cross-phase various
awareness of CFPS-Diff.

Lclas = −
N−1∑
n=0

log(1−D(x0))× |n− c|λ3 , (6)

where l denotes l− th feature layer, n is the index class in the output layer, c is
the index of the ground-truth phase label ξpost and λ3 is a hyperparameter that
determines the strength of the coefficient. The classification loss Lclas boosts the
phase various aware of CFPS-Diff of various through introducing distance con-
straints. Furthermore, the phase difference features extracted by the distinction
network can be used to reconstruct the specific CECT image, optimized by:

Lsyn−b = |uθ (xt, xc, Fd (x0) , t)− x0| (7)

Losses. The total loss Ltotal of the CFPS-Diff is defined as:

Ltotal = Lsyn−a + Lsyn−b + λ4Lclas + λ5Lalig, (8)

where λ4 and λ5 are the weights for the Lclas loss and Lalig loss, respectively.

3 Experiments

3.1 Experimental setup

Dataset. The following three medical image datasets are employed in this study.
We constructed the CT-1 dataset by collecting CT images from 547 patients
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Table 1. Ablation study for the proposed components on the CT-1 dataset.

CFPL CPSL CDW-Loss MAE PSNR SSIM
✗ ✗ ✗ 38.73 28.07 0.787
✓ ✗ ✗ 34.78 28.78 0.801
✓ ✓ ✗ 30.70 29.51 0.824
✓ ✓ ✓ 30.69 29.51 0.825

across AP, VP, and DP, along with corresponding body segmentation annota-
tions, from a local hospital, which was then used for model training and vali-
dation. Additionally, CT images from 116 cases across two other local hospitals
were collected to form the CT-2 set, which was designated as the test set. Among
these, 28 cases featuring rare pathological types were selected from the three cen-
ters to constitute the external test set. The image preprocessing involved both
registration and grayscale normalization. We performed affine spatial normal-
ization using FSL and symmetric normalization (SyN) via ANTS to align the
multiphase CECT images with NCCT images. The CT images were clipped
within the range of [-1000, 1000] Hounsfield units (HU) and normalized to [-1,
1] using a piecewise linear mapping approach.

Implementation. All experiments were conducted in PyTorch on a server with
an NVIDIA GeForce RTX 3090 GPU. The input size for the synthesis models was
256 × 256 × 8. Data augmentation, including random translation and flipping,
was applied to enhance image diversity. The timestep was set to 1000. We used
the AdamW optimizer with a polynomial decay learning rate strategy, starting
at 2 ×10−4 for up to 50 epochs. λ1, λ2, λ4, and λ5 are set to 10, 0.1, 0.1 and 0.1,
respectively.

Evaluation Metric. To evaluate synthesis performance, we used the MAE,
structural similarity index measurement (SSIM), and peak signal-to-noise ratio
(PSNR) to assess pixel-level similarity and image quality, as well as Frechet
Inception Distance (FID)[18] and Learned Perceptual Image Patch Similarity
(LPIPS)[19] to measure the similarity of data distributions between the synthetic
and real images.

3.2 Experimental results

Ablation Study. To assess the contribution of each key component in CFPS-
Diff, we conducted an ablation study on the validation set from the CT-1 dataset
(as shown in Table 1), evaluating different model variants. We used DDPM as
the baseline to synthesize multiphase CECT from NCCT. We then introduced
CFPL, CPSL, and CDW-Loss, resulting in three ablation models to analyze the
impact of each component. Compared with the baseline, the whole CFPS-Diff
framework led to a reduction in mean MAE from 38.73 to 30.69, an increase
in mean SSIM from 0.787 to 0.82, and an elevation in mean PSNR from 28.07
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Table 2. Quantitative comparisons of different models for NCCT-to-multiphase CECT
synthesis on multi-enter datasets.

Dataset Model
Arterial Phase Venous Phase Delay Phase

MAE PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM

CT-2
Dataset

U-Net 35.79 28.81 0.802 36.80 28.29 0.788 36.02 28.21 0.795
Pix2pix 45.43 27.57 0.749 61.16 26.15 0.616 49.38 27.18 0.695
Pix2pixHD 47.10 27.25 0.715 38.28 28.12 0.774 36.97 28.13 0.788
CycleGAN 42.52 27.89 0.751 48.84 27.24 0.704 44.04 27.52 0.739
SwinUNETR 32.66 29.24 0.819 34.51 28.50 0.802 34.43 28.38 0.805
TransUNet 33.48 29.12 0.815 36.04 28.26 0.793 34.90 28.34 0.802
ResViT 34.09 29.03 0.809 34.47 28.61 0.800 36.23 28.19 0.796
DDPM 39.47 28.21 0.791 39.99 27.84 0.780 38.72 27.79 0.794
CFPS-Diff 30.44 29.79 0.832 31.63 29.35 0.820 31.52 29.02 0.822

External
Set

U-Net 35.95 28.53 0.798 35.44 28.54 0.791 35.29 28.39 0.797
Pix2pix 44.96 27.38 0.750 58.94 26.35 0.625 47.42 27.46 0.704
Pix2pixHD 47.51 27.15 0.702 37.63 28.24 0.773 36.42 28.33 0.787
CycleGAN 42.42 27.64 0.749 46.73 27.48 0.711 42.33 27.73 0.746
SwinUNETR 32.94 28.92 0.816 33.18 28.75 0.805 33.78 28.57 0.807
TransUNet 33.50 28.84 0.813 34.96 28.44 0.797 33.83 28.63 0.806
ResViT 34.59 28.64 0.804 33.37 28.78 0.803 35.69 28.32 0.798
DDPM 39.49 28.03 0.790 38.70 28.10 0.782 37.87 28.01 0.797
CFPS-Diff 30.87 29.41 0.830 30.46 29.61 0.823 30.91 29.24 0.825

to 29.51. In particular, the sequential addition of the CFPL and CPSL mod-
ules resulted in improvements of 10.20% and 11.73% in MAE, as well as 1.78%
and 2.87% in SSIM, respectively. These results demonstrate that the proposed
modules significantly enhance the synthesis of multiphase CECT from NCCT.

Comparison with Literature. We conducted a series of experiments to com-
pare the performance of our proposed CFPS-Diff with other SOTA synthesis
methods, including U-Net[20], Pix2pix [21], Pix2pixHD[22], CycleGAN [23], Swi-
nUNETR[24], TransUNet [25], ResViT[26] and DDPM.The quantitative results
of all synthesis methods on our CT-2 Dataset and external set are presented
in Table 2. Compared with these eight methods, our CFPS-Diff achieves the
lowest MAE, highest SSIM, and highest PSNR, with a mean MAE of 31.20,
a mean SSIM of 0.825, and a mean PSNR of 29.39 on the CT-2 Dataset, and
30.75, 0.826, and 29.42 on the external set. Specifically, compared to the subop-
timal SwinUNETR, our model achieves notable improvements of 6.8%, 8.35%,
and 8.45% in MAE across AP, VP, and DP, respectively, on CT-2 Dataset, and
6.28%, 8.2%, and 8.5% on external set. Fig. 2. visualizes the synthetic triple-
phase CECT images from different methods. It is observed that the synthetic
CECT images generated by our CFPS-Diff show richer contrast-enhanced de-
tails, especially in the arterial arteries, than those generated by other SOTA
synthesis methods. To more comprehensively evaluate the quality of synthetic
CECT images by different methods, we employed two commonly used metrics
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Table 3. Evaluation of different models for NCCT-to-multiphase CECT synthesis
based on data distribution similarity on External Set

Model
Arterial Phase Venous Phase Delay Phase

FID LPIPS×10 FID LPIPS×10 FID LPIPS×10

U-Net 31.77 0.95±0.15 37.89 1.13±0.18 31.30 0.96±0.14
Pix2pix 28.53 0.92±0.14 35.53 1.12±0.17 30.39 0.95±0.14
Pix2pixHD 27.65 1.03±0.16 26.97 1.00±0.17 29.58 0.88±0.14
CycleGAN 29.95 0.99±0.14 31.30 1.17±0.18 25.77 0.95±0.14
SwinUNETR 23.50 0.75±0.13 28.17 0.89±0.15 23.41 0.77±0.13
TransUNet 27.50 0.79±0.13 29.50 0.91±0.15 27.35 0.79±0.12
ResViT 27.74 0.81±0.14 26.68 0.92±0.17 27.61 0.85±0.15
DDPM 29.64 0.86±0.14 32.56 1.02±0.17 27.45 0.85±0.13
CFPS-Diff 21.46 0.70±0.14 26.43 0.86±0.16 20.56 0.71±0.13

Fig. 2. Visual results of synthetic multiphase CECT images generated by different
synthesis methods on external set. The color maps are the difference between the
synthetic CECT and the real CECT.

for assessing visual quality, namely FID and LPIPS, with the results presented in
Table 3. Our CFPS-Diff achieved improvements of 32.45%, 30.25%, and 34.31%
in FID for the three phases, and enhancements of 26.32%, 23.89%, and 26.04%
in LPIPS, respectively, compared to the lower limit.

4 Conclusion

In this paper, we introduce CFPS-Diff, a united framework for synthesizing
multiphase CECT images from NCCT images. Unlike existing approaches that
treat each phase independently, our proposed CFPS-Diff integrates CFPL within
a conditional diffusion model. This integration enables smooth and orderly tran-
sitions between phases, ensuring both anatomical and temporal consistency in
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the synthesized enhancement patterns by effectively modeling the dynamic dis-
tribution of contrast agents. Furthermore, we introduce CPSL through a phase
distinction network, which aligns cross-phase specificity features with contrast
information, thereby enhancing the synthesized CECT images and improving
quantitative synthesis metrics. Extensive experiments conducted on multi-center
datasets demonstrate the superior performance of CFPS-Diff compared to state-
of-the-art medical image synthesis methods.
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