
RL4Med-DDPO: Reinforcement Learning for
Controlled Guidance Towards Diverse Medical

Image Generation using Vision-Language
Foundation Models

Parham Saremi⋆†1,2, Amar Kumar†1,2, Mohamed Mohamed1,2, Zahra
TehraniNasab1,2, and Tal Arbel1,2

1 Center for Intelligent Machines, McGill University, Montreal, Canada
2 Mila - Quebec AI institute, Montreal, Canada

parham.saremi@mail.mcgill.ca
† equal contribution

Abstract. Vision-Language Foundation Models (VLFM) have shown a
tremendous increase in performance in terms of generating high-resolution,
photorealistic natural images. While VLFMs show a rich understand-
ing of semantic content across modalities, they often struggle with fine-
grained alignment tasks that require precise correspondence between im-
age regions and textual descriptions, a limitation in medical imaging,
where accurate localization and detection of clinical features are essential
for diagnosis and analysis. To address this issue, we propose a multi-stage
architecture where a pre-trained VLFM (e.g. Stable Diffusion) provides
a cursory semantic understanding, while a reinforcement learning (RL)
algorithm refines the alignment through an iterative process that opti-
mizes for understanding semantic context. The reward signal is designed
to align the semantic information of the text with synthesized images.
Experiments on the public ISIC2019 skin lesion dataset demonstrate that
the proposed method improves (a) the quality of the generated images,
and (b) the alignment with the text prompt over the original fine-tuned
Stable Diffusion baseline. We also show that the synthesized samples
could be used to improve disease classifier performance for underrepre-
sented subgroups through augmentation. Our code is accessible through
the project website.3

Keywords: Medical Image Generation · Policy Optimization · Rein-
forcement Learning · Vision-Language Foundation Models.

1 Introduction

The development of state-of-the-art Vision-Language Foundation models (VLFM),
such as Stable Diffusion [25], has significantly improved the image generation
⋆ Corresponding author.
3 https://parhamsaremi.github.io/rl4med-ddpo
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Fig. 1: Comparison of synthetic samples generated from Stable Diffusion (left
image) and Stable Diffusion with Reinforcement Learning (right image). The text
prompt for these image samples was - A dermatoscopic image with melanoma
showing hairs. Note the unwanted but relevant artifacts that do not align with
the input text prompt.

quality and resolution significantly over traditional generative models, such as
VAEs and GANs [12,4]. In medical imaging, these new foundation models have
demonstrated capability to generate highly realistic 2D images with fine details
and textures. However, diffusion models inherit and amplify data bias [1,24]
from large-scale training data, showing undesired behaviors. For example, when
given a text prompt A dermatoscopic image with melanoma showing hairs
to Stable Diffusion fine-tuned on skin cancer data, it generates realistic images
with hairs. However, the synthesized images typically also contain well-known
artifacts in the dataset, such as a ruler or ink shown in Figure 1. Thus, a semantic
alignment mismatch exists between the text and the synthesized image.

Synthetic image generation is of importance, especially in medical imaging,
as it can be used for tasks such as data augmentation [18], debiasing classi-
fiers [19] or accurate detection and diagnosis of disease [13,33]. Additionally, high-
resolution and precise image-generation capabilities in complex settings, such as
drug discovery or personalized diagnosis, require analyzing counterfactual "what
if" scenarios [11,20,23]. Recently, Denoising Diffusion models (DDMs) [15] have
shown outstanding performances in high-resolution conditional image genera-
tion. Despite their impressive capability to synthesize images, they are prone to
biases. These diffusion architectures utilize a controlled sampling process, which
can either be classifier-free [16] or classifier-guided [8]. A promising alternative
recently proposed for this goal is the use of Reinforcement Learning (RL) to op-
timize the diffusion process for improved control and adaptability [3,10,22,35].
Fine-tuning the diffusion model to optimize a desired reward function can enable
these models to incorporate task-specific preferences, potentially reducing bias
and improving alignment between generated samples and predefined constraints.
Denoising Diffusion Policy Optimization (DDPO) [3] is an RL-based method that
reframes the diffusion process as a multi-step Markov Decision Process (MDP)
to optimize a given reward function. With the rise of policy-based methods, the
effectiveness of various reward functions has been demonstrated in natural imag-
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Fig. 2: Proposed architecture for policy optimization using a reward function for
diverse and realistic image generation using fine-tuned Stable Diffusion. Given
an input text prompt, the model synthesizes a realistic image xg during the
reverse diffusion. This generated image is then passed to a pre-trained classifier
to compute the reward which helps guide the denoising UNet to improve image
synthesis so it is better semantically aligned with the input text.

ing domains, including diversity-based rewards [22,35], alignment rewards [3],
and visual rewards such as aesthetic quality [3]. However, their applicability in
medical imaging remains underexplored.

In this work, we introduce the first framework for improved performance of
text-guided image generation in medical imaging using Stable Diffusion through
policy optimization in reinforcement learning. Specifically, we demonstrate that
policy-based optimization improves the alignment between the input text prompts
and the generated images. We propose a new metric - Artifact Prevalence Rate
(APR) to compute the presence of the desired attributes in the synthesized
image. Extensive experiments are performed on a publicly available dataset,
ISIC2019 [5,6,31], demonstrating that the method is capable of synthesizing
photorealistic images that are completely in alignment with the medical context.
This permits more robust and bias-aware medical image synthesis in general, and
specifically complements previous work [2,32] on ISIC which focus on mitigating
biases for the task of image classification.

2 Methodology

The reinforcement learning framework combines Stable Diffusion in two stages:
(i) Fine-tune the original Stable Diffusion v1.5 [25] with the medical dataset to
align text-image pairs; (ii) Use a pre-trained classifier to compute the reward and
update the weights of fine-tuned Stable Diffusion from stage (i), by performing
policy optimization. The general framework of our method is now described and
illustrated in Figure 2.
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2.1 Denoising Diffusion Policy Optimization (DDPO)

Diffusion models: Markov chains [28] model the data generation process by
gradually adding and removing noise. The forward process transforms input data
x0 into Gaussian noise xT over T steps using a variance schedule βt:

q(xt|xt−1) = N (
√
1− βtxt−1, βtI)

Defining αt = 1− βt and ᾱt =
∏t

s=1 αs, we can directly express xt as:

q(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I)

The reverse diffusion process in DDPMs [15] removes noise using a trained
model pθ(xt−1|xt), approximating the true posterior q(xt−1|xt, x0). The model
is trained via variational inference by minimizing the KL divergence between p
and q.
DDPO: After the diffusion model is fine-tuned, it can be be further optimized
to maximize the expected reward J(θ) = Ec∼p(c),x0∼pθ(x0|c)[r(x0, c)] where p(c)
is distribution over input text prompts/conditions and pθ(x0|c) is the sample
distribution. This is achieved by first re-framing the diffusion model as a multi-
step Markov Decision Process (MDP). An MDP can be defined by a set of states
S, set of actions A, reward function R, and state transition distribution P. The
RL agent tries to maximize the cumulative reward function by learning the policy
π(at|st), allowing it to select actions at each step.

Adapting the framework from [3], we define the MDP using the denoising
model backward process as the policy:

st ≜ {xt, c, t}, at ≜ xt−1

π(at|st) ≜ pθ(xt−1|xt, c),

P (st+1|st, at) ≜ {δ(xt−1), δ(c), δ(t− 1)}
ρ(s0) ≜ {N (0, 1), δ(c), δ(T )}

R(st, at) ≜ 1{t = 0} · r(x0, c),

(1)

where the state st is defined as the combination of latent xt, time t, and the
condition c. Policy π for selecting the action is defined using the denoising model,
and δ(x) denotes the Dirac function. While fine-tuning the diffusion model, we
use the importance sampling estimator [17] which uses two models θ and θ′ to
calculate the policy gradients for θ:

∇θL = E

[
T∑

t=0

pθ(xt−1|xt, c)

pθ′(xt−1|xt, c)
∇θ log pθ(xt−1|xt, c)r(x0, c)

]
. (2)

The expectation is taken over trajectories (intermediate latents in the denoising
process) sampled from the previous model θ′. This estimator allows multiple
gradient evaluations using samples generated from the old model θ′. However,
as discussed in [3], the estimator’s accuracy may degrade if pθ and pθ′ diverge
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Algorithm 1 SD Models with RL: implementing policy based gradient update.
Require: Pre-trained diffusion model pθpre , attribute classifier f(X), reward function

rA(cpred, c).
1: Initialize pθ = pθpre
2: while θ not converged do
3: for each prompt c ∼ p(c) do
4: Sample M images Xg|c = {x1

0,g, . . . , x
M
0,g}, xm

0,g ∼ pθ(x0|c), together with
their intermediate states xm

1:T,g.
5: Compute individual rewards with the attribute reward function for each

condition c, rA(f(Xg); c).
6: Take K rounds of policy gradient steps with 2.
7: end for
8: end while
9: return Fine-tuned diffusion model pθ.

significantly. To address this issue, trust regions [26] are applied to limit the size
of the update by using clipping techniques [27]. This will regularize the change
of θ with respect to θ′ resolving the problem [22].

2.2 Training Details

Finetuning Stable Diffusion: The original Stable Diffusion v1.5 [25] archi-
tecture consists of four main components: (1) image encoder, (2) Contrastive
Language-Image Pre-training (CLIP) text encoder, (3) denoising U-Net for re-
verse diffusion and (4) an image decoder. Aside from the denoising U-Net, all
other components of the Stable diffusion model remain frozen during fine-tuning.
The unet is fine-tuned using the denoising score matching objective. Similar to
PRISM [21], the input to the CLIP encoder is a template text: A dermoscopic
image with [disease] showing [artifact], where disease is melanoma or
melanocytic nevis and artifact is hairs, gel bubbles, ink or ruler thus helping
to synthesize semantically aligned images from the input text.
Policy based optimization: An H-head Efficient-Net [30] classifier (H =
6) is trained to identify the presence of artifacts including melanoma and
melanocytic nevus. The reward function, rA(.), with respect to a generated im-
age xg is computed as a ratio of the number of attributes correctly predicted
by the pre-trained Efficient-Net classifier to the total number of attributes. This
reward function is then used to update the weights of denoising U-Net. This
change in the value of the reward function between successive iterations is used
as a stopping criterion for model fine-tuning. This is discussed in Algorithm 1.

2.3 Metrics & Evaluation of Synthesized Samples

The synthesized samples from our method, SD+RL, are compared against the
fine-tuned Stable Diffusion (baseline), SD. Both these methods generate realistic
samples, but the synthesized images aren’t always perfectly aligned with the
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Table 1: Summary of train, validation and test splits for ISIC 2019 dataset. Note
that the prevalence of ink is significantly low compared to others

Melanoma Melanocytic
Nevus Hair Gel

Bubbles Ink Ruler

Train 2750 9254 4514 1300 201 1608
Validation 454 1665 802 228 34 308

Test 537 1956 989 257 37 341

input prompt. Thus, to measure the semantic alignment between image-text
pairs, we propose a new metric, Artifact Prevalence Rate (APR), computed as
follows:

APR =
count of xi ∈ X : f(xi) = C(input text)

N
(3)

X are all the synthesized samples for the attribute under observation, N is the
number of synthesized samples, f(.) is the multi-head attribute classifier that
identifies hair, gel bubbles, rule and ink, C(.) is the function that one-hot encodes
the disease and artifact information in the input text. A higher value of APR
is expected as it would indicate that only the attribute mentioned in the text is
prevalent in the synthesized samples and all others are ignored.

Finally, if the synthesized samples carry rich discriminative information about
the domains, they should be able to improve the performance of subclasses with
fewer real samples through augmentation. As such, the dataset was augmented
with synthesized samples and the classifier’s performance per subclass was eval-
uated before and after augmentation.

3 Experiments and Results

3.1 Dataset and Implementation Details

We perform experiments on a publicly available dataset, ISIC 2019 [5,6,31].
Table 1 shows the distribution of samples and the artifacts as per train, validation
and test splits.

To evaluate and compare our method (RL+SD) with the baseline (SD), we
use Fréchet Inception Distance (FID) [14] and LPIPS [34], in addition to the
proposed APR metric. For a comprehensive analysis, we generate approximately
70K samples across various prompts and label combinations, ensuring robust
evaluation of both models.

3.2 Qualitative Evaluations

Melanomas often have irregular, asymmetric shapes, while benign melanocytic
nevus are typically well-circumscribed and symmetric [7,9]. Additionally, melanomas
tend to have irregular, poorly defined borders and are often large with a diame-
ter of about 6mm, while melanocytic nevus have clear, well-defined edges [29,9].
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Real Samples Synthetic Samples : SD Synthetic Samples : SD + RL

Fig. 3: Comparing real samples for the category "melanocytic nevus with gel
bubbles" with the synthesized images using fine-tuned Stable Diffusion (SD)
and fine-tuned Stable Diffusion with reinforcement learning (SD+RL). Note the
unwanted artifacts present in the image synthesized by SD.

In Figure 3, both methods can accurately replicate the distinct melanomas and
melanocytic nevus characteristics in the generated images. However, the sam-
ples from the method using SD+RL perform better as they create fewer or no
unwanted attributes while synthesizing the images.

In Figure 4, we show that the proposed framework can create better samples
for domains with no corresponding real samples i.e., during fine-tuning the Sta-
ble Diffusion model never saw these combinations of artifacts. For example, no
real samples of melanocytic nevus with attributes hairs and ink are in the train-
ing data and SD+RL is able to synthesize visually better samples with better
alignment and higher artifact quality.

3.3 Quantitative Evaluations

Table 2 evaluates the model using the APR metric across different disease and
artifact combinations. The ability of our method (SD+RL) to maintain high

Synthetic Samples : SD Synthetic Samples : SD + RL

Fig. 4: Qualitative comparisons of synthesized images of subgroups (based on
combinations of disease and artifacts) for which none or a few (less than 20) real
samples are present. Note that some of these subgroups include combinations
of attributes, such as melanoma with gel bubbles and ink or melanocytic nevus
with ink and hair.
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Table 2: Quantitative results for evaluating synthesized samples (1000 samples
per class). Note the subgroups MEL with hair, ink and NV with ink have fewer
real samples. Also, SD+RL consistently achieves higher APR values, even for
classes with a limited number of real samples. (Gel = Gel Bubbles)

Melanoma (MEL) Melanocytic Nevus (NV)

Hair Gel Ink Ruler Hair Gel Ink Ruler

# Real Sample 543 260 4 440 3051 489 21 520

APR ↑ (%) SD (Baseline) 63.74 13.75 0.2 76.56 44.37 13.54 0.1 80
SD+RL 86.97 94.37 1.6 93.85 75.72 80.62 1.4 87.18

APR values across underrepresented classes further validates the effectiveness of
our optimization strategy. In Table 3, our method outperforms the pre-trained
SD model with respect to APR, indicating that our method synthesizes images
better aligned with the input prompts and generates fewer unwanted artifacts.
Additionally, our methods also achieve a lower FID and similar LPIPS compared
to the baseline. Finally, Table 4 presents the performance of the model after
augmenting the training dataset with synthesized images. The results show that
classifiers trained on real data augmented with our model’s generated images
achieve the highest performance. This confirms that our synthesized samples
provide useful augmentations that enhance classifier accuracy, further validating
the effectiveness of our approach in improving downstream tasks.

4 Conclusion

In this work, we demonstrate the first method showing alignment between the
text prompt and image generation using a vision-foundation model guided by a
policy optimization for medical imaging applications. We show through extensive
qualitative and quantitative validation that these images align well with the
input text prompt, and they are helpful for downstream tasks such as augmenting
the classifier to improve performance over minority classes. Future work will
explore the use of diverse policies for complex tasks such as subgroup clustering
in the latent space for disease image marker discovery.

Table 3: Quantitative results for evaluating synthesized samples for 32 different
prompts (1000 samples per prompt) of various artifacts with MEL or NV. LPIPS
was calculated by randomly selecting 1000 samples per prompt and comparing
them with corresponding real images, resulting in a total of 32,000 comparisons.

Model APR↑(%) FID↓ LPIPS↓

SD (Baseline) 18.28 121.47 0.60
SD+RL 63.14 114.7 0.59
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Table 4: F1 and Accuracy for different attributes on ISIC test set for Real,
RL-synthesized+Real, and SD-synthesized+Real. The metrics are calculated for
each attribute independently of the others.

Real SD-RL+Real SD+Real

Setting F1 Accuracy F1 Accuracy F1 Accuracy

Hair 0.91 93.10 0.92 93.54 0.91 93.26
Gel Bubbles 0.66 93.90 0.70 94.06 0.67 93.90
Ruler 0.89 96.95 0.89 97.03 0.85 96.23
Ink 0.90 99.72 0.89 99.68 0.86 99.60
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