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Abstract. Lung cancer remains the leading cause of cancer-related mor-
tality in the United States, despite the adoption of low-dose computed
tomography (LDCT) and updated screening guidelines from the United
States Preventive Service Task Force (USPSTF) [19]. Limited infrastruc-
ture and financial costs continue to hinder widespread LDCT adoption,
while the increasing detection of indeterminate pulmonary nodules (4-20
mm) challenges accurate diagnosis and clinical decision-making. We ad-
dress these limitations by pretraining masked autoencoders (MAE) on
the COPDGene dataset, which captures chronic lung inflammatory dis-
ease features. Emphysema and airway disease, two distinct subtypes of
COPD, are pathophysiological manifestations of chronic lung inflamma-
tion [4, 15]. Incorporating these features may enhance the model’s ability
to distinguish between malignant and benign pulmonary nodules. By ex-
ploring multiple masking strategies, we optimize network attention on
parenchymal and perinodular features, improving the extraction of rele-
vant image biomarkers. Our results demonstrate that pretraining on the
COPDGene dataset using random masking (r-masking) achieves supe-
rior classification performance, with a sensitivity of 88.79%, specificity
of 86.27%, and an AUC of 0.931, when compared to self-pretraining on
National Lung Cancer Screening Trial (NLST), and supervised learn-
ing on NLST. This highlights the importance of leveraging chronic dis-
ease datasets for self-supervised learning and underscores the potential
of MAE-based approaches to improve nodule classification in clinical set-
tings. Code available at https://github.com/axemasquelin/Regional MAE
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Lung Cancer.

1 Introduction

Advancements in artificial intelligence have led to strong optimism about im-
proving the early detection and intervention of cancer. The World Health Orga-
nization (WHO) defines early diagnosis as the timely diagnosis of disease before
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progressing to advanced stages through detecting early pathophysiological de-
velopment and disease symptoms [16]. In the case of lung cancer, the adoption
of low-dose computed tomography (LDCT) as the primary screening modality
has led to a 20% reduction in mortality [19].

However, adherence to these screening guidelines remains low across the
United States due to screening costs, lack of infrastructure, and personnel to
support increased screening [16]. To address this gap in infrastructure and per-
sonnel, deep learning methodologies exploring detection and classification have
been developed to varying degrees of success [2]. In all cases, training these mod-
els requires large data sources to generalize well to novel data. However, as model
size and complexity grow, so does its need for data. To address this challenge,
pretaining on large datasets, such as ImageNet, and fine-tuning the network on
the target domain became the standard methodology of choice. In the case of
medical applications, this approach of training on a source domain and trans-
ferring knowledge to the target domain does not guarantee that the features
learned strongly overlap with those of the target domain [17]. To address this
challenge, self-pretraining using masked autoencoders (MAE) has been explored
in order to build more robust features [6, 8, 23|. Unlike pretaining, the source and
target domains use the same dataset, allowing the model to extract relevant do-
main knowledge, such as important structures and pathophysiologies associated
with disease states. In addition, this approach has improved the model’s gener-
alizability across tasks and reduced the reliance on large annotated datasets to
learn general high-level features [6]. While self-pretraining using MAE has shown
promising results in medical imaging tasks |7, 23|, it has its own challenges. One
significant limitation of this approach is that it relies on the same dataset for
pretraining and downstream tasks, which can lead to model overfitting and be
sensitive to dataset size [20].

Considering this, the proposed work explores the application of pretrain-
ing using MAE on a chronic obstructive pulmonary disease (COPD) dataset,
COPDGene, for downstream indeterminant pulmonary nodule (4mm-20mm)
classification on the National Lung Screening Trial (NLST) dataset [1]. Em-
physema, a distinct subtypes of COPD, is a pathophysiological manifestation of
chronic lung inflammation and is considered pre-malignant conditions by radiol-
ogists when reviewing LDCT [4, 15]. Accordingly, increasing model attention to
inflammatory image biomarkers is expected to improve the ability of the model
to distinguish between malignant and benign nodules accurately. In addition,
various masking strategies will be utilized to explore the impact of modulating
network attention on parenchymal and perinodular features when compared to
standard masking strategies.

1.1 Related Works

Recent advances in self-supervised learning (SSL) have demonstrated perfor-
mance improvements over both weakly supervised learning and traditional pre-
training methods [7,9,12,17]. Among these, masked image modeling (MIM)
has emerged as a particularly effective pretraining strategy for both natural
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and medical images [8,23,24]. MIM approaches leverage the reconstruction of
masked regions to encourage the learning of robust and context-aware visual rep-
resentations. In medical imaging, the use of tailored masking strategies, such as
non-overlapping or domain-aware masks, has been shown to further enhance the
ability of the model to capture fine-grained, clinically relevant features [21]. In
parallel, alternative SSL paradigms such as contrastive learning have also gained
traction, particularly in the development of pulmonary foundation models [14]
and combined MIM approaches [22].

r-masking t-masking p-masking

Fig. 1. First row: Window normalized images with COPDGene dataset. Second row:
Masked images showing the random masking (r-masking), tumor masking (t-masking),
and parenchyma masking (p-masking) strategies. Third row: Reconstructed images
from the unmasked patches for the r-masking, t-masking, and p-masking strategies,
respectively, where every two columns represent a new masking strategy.

2 Methodology

Figure 1 illustrates the proposed masking strategies, showing the implementation
of randomly masking out patches across the image (r-mask), removing tumor and
boundary-specific information (t-mask), and the removal of parenchymal infor-
mation (p-mask) for the pretraining of our Vision Transformer (ViT) encoder.

2.1 Vision Transformer

ViT architectures are the backbone for both the pretraining phase and down-
stream classification. These architectures comprise a patch embedding layer,
positional embedding, and a transformer block for feature extraction. The patch
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embedding layer transforms a provided image into a set of equal sequences, or
patches, based on the provided patch dimension (P). The number of patches
(N) is defined as N = HW/P? for 2D images, where H is the height, and W
is the original image’s width. These patches, thereafter, become the input for
the transformer block of the ViT backbone. A positional embedding layer is
utilized to retain positional information following the generation of the patches.
Prior work has demonstrated that using a sine-cosine positional embedding im-
proves MAE performance when compared to 1D patch embedding [6]. Lastly,
the transformer blocks are created with a depth, D, alternating between mul-
tiheaded self-attention layers and multilayer perceptron blocks. To establish a
baseline performance for indeterminant nodule classification, pretraining on Ima-
geNet and training from scratch are evaluated. The parameters of our ViT-B-16
model follow prior literature [5], where the embedding dimension is 768, the
number of heads is 12, the depth of the encoder is 8, the attention drop rate is
0.1, the drop rate is 0.1 [6].

2.2 Masked Autoencoder

To apply the masking strategies shown in figure 1, the input of the model is
divided into equal non-overlapping patches of dimension P. In the case of r-
masking, patches are randomly selected as masked. In t-masking, tumor patches
are predetermined as the central patches containing all, if not most, of the tumor.
In contrast, parenchyma patches are assigned for all other regions. During t-
masking, all tumor patches are then assigned as masked while the parenchyma
remains visible. Inversely, p-masking sets all parenchyma patches as masked
and tasks the MAE to reconstruct them. Visible patches are concatenated with
their respective position embedding before the forward function of the ViT to
maintain position information related to the visible patches. Before the decoder,
the learnable mask tokens are put in the position of the masked patches alongside
the full set of tokens, including patch-wise representations, from the encoder. The
additional positional embedding to the input tokens of the decoder ensures the
restoration of the patches in each given position. Using the reconstructed patches
from the MAE decoder, we compare the reconstruction to that of the original
patches. The reconstruction loss is only computed across the marked patches.

After pretaining the MAE, a classifier head was appended to the encoder to
classify nodules as malignant or benign. The linear classifier takes the encoder
embedding and predicts the class output of the nodule. Binary cross-entropy loss
is used to train the model. We explore both fine-tuning and linear probing for
training the classifier head. In the case of linear probing, only the classifier head
is updated, while during fine-tuning the encoder, embedding layer, and classifier
are updated, see table 1.

2.3 Datasets and Implementation

COPDGene Phase 1 is a large observational case-control study of COPD that
enrolled 10,000 individuals, all of whom underwent CT imaging. Participants had
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a smoking history of at least 10 pack-years and were classified according to the
GOLD criteria into the following COPD stages: 1, 2, 3, or 4 [18, 10]. Additionally,
individuals who met the smoking history requirement but had normal spirometry
were categorized as ‘Undefined’ (smokers controls). Using a nnUnet to detect the
presence of pulmonary nodules, 64x64x64 regions of interest were extracted from
each individual. Multiple nodules could occur within one individual, resulting in
51814 nodules being detected. Of which, only 5000 were selected for training
the MAE, as the source domain. A 5-fold cross-validation is used to evaluate
the performance of the model. A training-validation-test split of 70-10-20 was
used. Axial slices (64x64) were randomly selected the region of interest during
training. Small rotations between -10 to 10 degrees and random affine were
applied to augment the data. Window normalization was applied to all images
to enhance the parenchymal tissue signal. A width of 1600 HU and a center at
-600 HU was selected.

The National Lung Screening Trial (NLST) dataset was used as the down-
stream classification task target domain. The low-dose computed tomography
branch of the NLST dataset contains 24,517 individuals between the ages of
55 and 74 who had a 30 or more pack-year of cigarette smoking history, were
former smokers who had quit in the last 15 years, and were able to lie on their
back with their arms raised above their heads [1]. Selecting single solid nodules
between 4mm to 20mm in diameter, clearly in the parenchyma and not pleural
based, resulted in 3533 individuals, of which 336 were malignant nodules. The
size criteria was selected to reduce the influence of diameter on the likelihood of
malignancy since solitary nodules with diameters greater than 20mm in diame-
ter are known to be associated with a greater than 50% risk of malignancy [13].
Random downsampling was used to balance the dataset, resulting in 672 im-
ages. To augment the data, three central axial slices (64x64) of the nodules were
selected if possible, this resulted in a dataset of size 2016. A training-validation-
test split of 70-10-20 was used for downstream classification. To allow for proper
comparison between MAE pretraining approaches, COPDGene data was set to
be equal to NLST.

3 Results

Ablation Studies. Results from the ablation experiment demonstrate that the
designed MAE remains stable across various parameters of the study, as shown
in Table 1. Parameters such as patch size, number of encoder heads, encoder
and decoder depth, loss function, and embedding dimension were evaluated for
their role in the model’s performance on downstream classification. As seen in
table la, a patch size of 8 performed slightly better than the standard patch size
of 16 typically used for ViT models, with a fine-tuning (ft) accuracy of 90.71%
and linear probing (lin) accuracy of 82.24%. Decreasing the number of encoder
heads to 8 resulted in the best performance, with 92.39% ft and 83.58% lin
accuracy (Tablelb). Regarding the loss function, the use of mean squared error
with normalization achieved the highest linear probing performance (83.52%),
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Table 1. Ablation Experiment on pertaining using COPDGene dataset, reporting fine-
tuning (ft) and linear probing (lin) performance.

loss ft lin
patch| ft lin heads| ft lin
4 [89.5080.95 6 [90.30 |81.85 mrize(v(v/ Onﬁ‘r’rrn‘;l) fﬁ‘g; gé'ig
8 [90.71|82.24 8 |92.39/83.58 . (WV/VO norm) 2071 | 89,96
16 |89.68(82.30 12 |90.71]82.24 o (w norm) | 01.12 83,52

(a) Masking Patch (b) Encoder Heads: (c) Loss function: loss

Size: size of the masking

number of encoder heads

function performance with

patch and without pixel
normalization
depth| ft lin depth| ft lin dim | ft lin
4 192.39| 82.1 4 92.44 |83.43 252 89.22 | 77.27
6 |90.42|81.67 6 |92.84|81.78 516 [90.85| 81.46
8 90.71 [82.24 8 90.71 | 82.24 768 | 90.71 | 82.24
12 192.10|81.15 12 192.56 | 83.35 1032| 88.97 |83.46

(d) Encoder Depth:
depth of the encoder
block following patch

(e) Decoder Depth:
depth of the decoder
block following patch

(f) Embedding:

embedding

Dimension of the decoder

while mean absolute error without normalization led to the best fine-tuning
performance (92.61%) (Figure 1c). For encoder depth, a shallower model with
a depth of 4 outperformed deeper configurations, with 92.39% ft and 82.1% lin
accuracy (Figure 1d). Similarly, a decoder depth of 12 provided the best overall
performance for both fine-tuning and linear probing, seen with 92.56% ft and
83.35% lin accuracy (Table 1le). Finally, increasing the embedding dimension to
1032 led to the highest linear probing accuracy (83.46), while 516 provided a
balance between fine-tuning (90.85%) and linear probing (81.46%) performance
(Table 1f).

Classification. All experiments reported here followed a 5-fold cross-validation
to ensure model performance and stability. As shown in Figure 1, the recon-
struction quality of the model varied significantly based on the masking strategy
employed and the type of pretraining utilized. Comparing all MAE methodolo-
gies, as shown in Table 2, the models pretrained with the COPDGene dataset
and using r-masking achieved the highest classification performance across all
metrics. This configuration yielded a sensitivity of 88.79% (+2.52), specificity
of 86.27% (+3.35), and an AUC of 0.931 (£0.015), highlighting the advantage
of regional masking in extracting meaningful representations of premalignant
conditions from the COPDGene dataset.

The performance of the ViT-B-16 models without MAE pretraining varied
depending on the initialization strategy. The model trained from scratch out-
performed the ImageNet pretrained variant, achieving a sensitivity of 71.20%
(+8.01), specificity of 78.26% (£4.39), and an AUC of 0.797 (£0.065). In con-
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Table 2. Classification and Reconstruction metrics of architectures across masking
strategies over 5-fold cross-validation.

Epochs

Models MAE | Dx Sensitivity (%) Specificity (%) AUC
ViT-B-16
scratch| - | 100 71.20 £ 8.01 78.26 £ 4.39  0.797 £ 0.065
pretrain| - | 100 54.67 + 10.91 71.81 £ 9.25 0.649 + 0.032
MAEcoppGene
r-masking| 500 | 100 88.79 + 2.52 86.27 + 3.35 0.931 + 0.015
t-masking| 500 | 100  82.10 + 5.39 84.55 + 2.78  0.887 £ 0.026
p-masking| 500 | 100  85.94 + 3.11 83.09 £ 4.46  0.909 +£ 0.017
MAENLsT
r-masking| 500 | 100 84.24 + 4.73 85.07 + 5.46 0.901 + 0.011
t-masking| 500 | 100  70.14 + 3.81 73.64 £ 5.16  0.775 £ 0.028
p-masking| 500 | 100  83.33 + 3.56 79.34 £ 3.56  0.874 £ 0.029

trast, the pretrained ViT-B-16 exhibited lower performance with a sensitivity of
54.67% (£10.91), specificity of 71.81% (£9.25), and an AUC of 0.649 (+0.032),
suggesting that domain-specific pretraining is essential for optimal model per-
formance.

When comparing masking strategies, r-masking consistently outperformed
both t-masking and p-masking across the two datasets. For pretraining on COPDGene,
r-masking showed superior results, with an AUC of 0.931, compared to 0.887 for
t-masking and 0.909 for p-masking. A similar trend was observed for pretaining
on NLST, where r-masking achieved an AUC of 0.901, compared to 0.775 and
0.874 for t-masking and p-masking, respectively.

The MAEyLsT models generally performed slightly worse compared to their
MAEcoppGene counterparts, though r-masking still provided the best perfor-
mance with a sensitivity of 84.24% (£4.73), specificity of 85.07% (£5.46), and
an AUC of 0.901 (£0.011).

4 Discussion

Although recent years have led to improved screening guidelines, the NLST
dataset still presents clinical limitations due to its relatively healthy popula-
tion compared to individuals eligible for lung cancer screening in the United
States [3]. This creates a gap in generalizability when applying models trained
on NLST data to real-world clinical populations with higher disease burdens
and comorbidities. Combining non-cancer-specific datasets, like COPDGene, for
pretraining offers a crucial advantage by introducing comorbidities common in
high-risk populations, such as COPD. This approach allows the model to learn
more specific and generalizable chronic inflammatory image biomarkers. These
can then be fine-tuned to specific cancer-related tasks on NLST data, as seen
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with the performance of the MAEcoppGene models when compared to ViT-
B-16 in table 2. Additionally, random masking strategies enable the model to
avoid learning redundant features by increasing the difficulty of extrapolating
nearby patch information [6]. Ensuring that the model learns both perinodu-
lar and parenchymal morphologies associated with chronic lung inflammation
across the region of interest. When applying a more static masking approach,
such as t-masking and p-masking, we can observe a drop in performance for
both MAEcoppgene and MAEyN;sT, as seen in table 2. Furthermore, looking
at figure 1, we see that although t-masking strategy improves the quality of re-
construction due to a decrease in the number of pixels it is learning, it fails to
improve classification outcomes when compared to p-masking.

Overall, the improved performance of all MAE strategies when compared
to standard ViT-B-16 models demonstrates that pretraining on a similar target
domain such as COPDGene, or self-pretraining on a medical dataset, allows for
more robust and transferable feature representations. Furthermore, the limited
success of transfer learning from ImageNet highlights the challenges of apply-
ing models pretrained on natural image datasets to medical imaging tasks [17].
Training from scratch or pretraining on a related medical target domain ensures
better feature alignment. It leads to more clinically meaningful performance
gains, emphasizing the importance of domain-specific pretraining for medical
imaging applications.

Nevertheless, the limitations of this study primarily stem from dataset con-
straints and the nature of baseline comparisons. The baseline models used are not
ideal for direct comparison, as modifications to the patch embedding or the size
of the region of interest (ROI) fundamentally alter the task. Expanding the ROI
to 224x224 likely impacted pretraining performance by increasing the number
of anatomical structures the model needed to recognize. Prior work has shown
that classification on smaller ROIs often improves performance because the most
relevant information for pulmonary nodule classification is concentrated around
the nodule itself [11]. This aligns with our findings, where p-masking performed
similarly or better than t-masking.

Performance differences between the MAE models trained on COPDGene
and NLST datasets can largely be attributed to disparities in dataset size and
nodule diversity. The COPDGene dataset included 51,814 potential nodules for
pretraining and evaluation, compared to only 3,533 nodules in the NLST dataset.
Despite data augmentation by selecting multiple slices from axial view in the
NLST dataset, the overall sample size remained insufficient. This data imbal-
ance and lack of nodule diversity likely contributed to the observed performance
gap, suggesting that the strict inclusion criteria for the NLST dataset may have
limited its representativeness and generalizability.

Moreover, the classification task focused exclusively on solitary pulmonary
nodules, tas the incident of cancer ranges from 10 to 70 percent [13]. However,
this focus excludes other clinically significant findings that radiologists must eval-
uate. Expanding the classification task to include ground-glass pulmonary nod-
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ules and other alternative findings could lower performance metrics but would
significantly enhance the model’s clinical applicability and utility.

5 Conclusion

In conclusion, we have demonstrated that MAE pre-training on datasets con-
taining premalignant conditions improves the classification accuracy of the model
when compared to both self-pretraining, ImageNet pretraining, and training from
scratch. Furthermore, random masking strategies ensure that the model learns
robust clinically relevant features when compared to alternative masking strate-
gies. Our approach leverages COPDGene, a dataset with a high prevalence of
multimorbidity and compromised lung function, in order to capture the complex-
ity of real-world screening populations while ensuring increased data diversity.
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