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Abstract. Radiographic knee alignment (KA) measurement is impor-
tant for predicting joint health and surgical outcomes after total knee
replacement. Traditional methods for KA measurements are manual,
time-consuming and require long-leg radiographs. This study proposes
a deep learning-based method to measure KA in anteroposterior knee
radiographs via automatically localized knee anatomical landmarks. Our
method builds on hourglass networks and incorporates an attention gate
structure to enhance robustness and focus on key anatomical features.
To our knowledge, this is the first deep learning-based method to local-
ize over 100 knee anatomical landmarks to fully outline the knee shape
while integrating KA measurements on both pre-operative and post-
operative images. It provides highly accurate and reliable anatomical
varus/valgus KA measurements using the anatomical tibiofemoral an-
gle, achieving mean absolute differences ~1° when compared to clinical
ground truth measurements. Agreement between automated and clini-
cal measurements was excellent pre-operatively (intra-class correlation
coefficient (ICC) = 0.97) and good post-operatively (ICC = 0.86). Our
findings demonstrate that KA assessment can be automated with high
accuracy, creating opportunities for digitally enhanced clinical workflows.
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1 Introduction

Knee osteoarthritis (OA) is a common and significant health issue that heavily
burdens healthcare systems [1]. Total knee replacement (TKR) may be offered

* Corresponding Author



2 Z. Hu et al.

as treatment for end-stage knee OA. Nevertheless, TKR is invasive involving
prosthesis implantation at the knee joint, and around 10% of patients are dis-
satisfied following TKR [2, 3|. Pre-operative and post-operative knee alignment
(KA) affects the outcomes following TKR, with radiographs revealing anomalies
such as deformities of the femur and tibia, as well as incorrect positioning of the
implants [4,5]. Accurate assessment of KA in radiographs is important for suc-
cessful treatment outcomes and long-term joint health. Traditional KA measure-
ment methods are manual, time-consuming, and require long-leg radiographs.
However, long-leg radiographs are not always undertaken in clinical practice,
and standard anteroposterior (AP) knee radiographs are often the main imaging
modality. Automated methods for measuring KA in AP knee radiographs are
potentially clinically valuable for reducing the cost and improving the efficiency
of the knee OA treatment pathway.

Knee anatomical landmark positions (Fig. 1la and 1b) are often used for auto-
matically generating KA measurements [17, 18]. Recently, machine learning and
deep learning have been widely used for localizing knee anatomical landmarks
in radiographs. One of the state-of-the-art methods of knee landmark localiza-
tion is based on a combination of random forest regression voting (RFRV) with
constrained local model (CLM) fitting [6, 7]. In [13], this RFRV-CLM framework
was effectively applied to localize key knee landmark positions for anatomical
tibiofemoral angle (aTFA) measurement, marking a significant advancement in
automated KA assessment. State-of-the-art deep learning-based methods include
the study by Tiulpin et al. [8], which used hourglass networks [10] to regress the
knee landmark positions from AP knee radiographs. Several other methods used
U-Nets [14] to localize pelvis and hand landmarks [15,16]. The landmark local-
ization stage in our method is based on the hourglass network architecture in [8]
and combines the network with an attention gate (AG) structure [9] to better
focus on target joint shapes in knee radiographs.

This study proposes a deep learning-based approach to automatically localize
knee anatomical landmarks and measure varus and valgus KA using the aTFA.
In both pre-operative and post-operative AP knee radiographs, the aTFA is
defined by the angle between the anatomical femoral and tibial axes (Fig. 1c).
To our knowledge, this is the first deep learning-based study to localize over 100
anatomical landmarks in knee radiographs and integrate KA measurements on
both pre-operative and post-operative images.

Contributions:

1) We compare our method with the approach presented in [13], demonstrating
superior accuracy in knee landmark localization and improved overall perfor-
mance in KA measurements across both pre-operative and post-operative knee
radiographs.

2) We further investigate how different strategies for generating KA measure-
ments, specifically the use of different subsets of landmark positions, influence
the level of agreement with ground truth measurements. This evaluation high-
lights the impact of landmark selection on measurement reliability and clinical
relevance.
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Fig. 1. An illustration of AP knee radiographs with corresponding anatomical land-
marks in (a) pre-operative and (b) post-operative images, and (c¢) the anatomical
tibiofemoral angle (aTFA) measurement. aTFA is defined by the angle between the
anatomical femoral axis (purple line) and tibial axis (blue line).

2 Method

The workflow of our automated KA measurement approach is shown in Fig. 2.
The knee landmarks are localized first, and subsequently the KA measurements
are generated based on the landmark positions.

2.1 Data

Our dataset consists of anonymized standard AP knee radiographs from TKR
patients. To simplify the analysis, all right knee radiographs were flipped hori-
zontally to appear as left knee radiographs. All radiographs were retrospectively
collected from Stockport NHS Foundation Trust (approved by the Health Re-
search Authority, IRAS 244130). All subjects underwent primary TKR and had
no revision surgery within three years after TKR. Our dataset consists of 566
pre-operative and 457 one-year post-operative images for training, and 376 pa-
tient image pairs (pre-operative and one-year post-operative) for testing [13, 21].
In the test set, 58 participants (15.4%) had unknown gender or ethnicity, and 2
(0.5%) had unknown age. Among cases with complete demographic information,
the mean age was 69.2 4 8.7 years, with 42.1% identified as male and 88.4% as
White. As TKR primarily affects older adults, this age distribution aligns with
real-world patient demographics. Landmarks were defined along the distal femur
and proximal tibia/fibula to capture the knee joint, including implants in the
post-operative images (see Fig. 1la and 1b). The pre-operative and post-operative
images were manually annotated with 134 and 181 landmarks, respectively.
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Fig. 2. The workflow of our automated KA measurement approach. The global search
model searches across the entire image and locates two reference points (yellow points),
which establish the approximate position, orientation, and scale of a reference frame
(region of interest). Then the local search model finds over 100 knee landmarks (red
points) within the reference frame to outline the shape of the knee joint. The land-
marks are mapped back to the original image for comparison with the original manual
annotations. The KA measurements are then generated from these landmark positions.

2.2 Landmark Localization

A deep learning-based system using hourglass networks was trained to localize
the anatomical knee landmarks. Our network structure (shown in Fig. 3) is
similar to the hourglass network in [8]. AG blocks similar to [9] are used to filter
the features passed from the upper-level blocks of the hourglass network. Our
automated landmark localization system consists of two stages: global search
and local search (with an independent hourglass network for each stage).

The global search aims to narrow down the search area for the subsequent
local search stage. We use a 4-layer hourglass network to scan the entire knee
radiograph to identify two reference points on the knee joint. In our case, we
chose two landmarks of the local search model for the purpose of initialization.
The two reference points have a fixed position in the reference frame, which
is centered around the region of interest identified in the global search. The
position, orientation, and scale of the reference frame are defined by the two
reference points.

The local model searches in the more confined reference frame. The objective
is to accurately localize specific landmarks on the target object. We use a 6-layer
hourglass network to localize the knee landmarks. The landmark positions are
then mapped back to the original image using the position, orientation, and scale
obtained from the global search.

2.3 Knee Alignment

We measured varus/valgus KA in standard AP knee radiographs both pre-
operatively and post-operatively using the aTFA (Fig. 1c). Varus and valgus
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Fig. 3. Model architecture with an hourglass network of depth d=4 combined with
AGs. Here, N is the width (initial number of channels) of the network.

were defined as negative and positive deviations from zero, respectively. We in-
cluded two sets of point-based measurements in our experiments. Automated
measurements were assessed based on a subset of the automatically localized
pre-operative and post-operative landmark positions in the 376 test patients.
Manual measurements were generated based on a subset of the manually
annotated landmark positions in pre-operative and post-operative images of the
376 test patients and were used as the manual ground-truth.

In addition, we also included a set of clinical measurements which were
directly measured in a clinical setting with a Picture Archiving and Communica-
tion System (PACS)-integrated measurement facility by an orthopedic surgeon.
Clinical measurements were obtained for a random subset of 50 test patients
from the 376 test patients. Two clinical measurements were taken for each im-
age, with a 7-10 day interval between them, and the second measurement was
made without knowledge of the first. The mean of the two measurements was
used as the clinical ground truth.

We investigated two calculation methods for the point-based measurements:
one (FTS) using only femoral and tibial shaft points, and another (FN'TS) in-
corporating femoral notch information with the femoral and tibial shaft points.
The two calculation methods in pre-operative and post-operative knee radio-
graphs are visualized in Fig. 4a and 4b, respectively.

3 Experiments

3.1 Implementation Details

Hourglass networks were trained using PyTorch 2.3.1 for deep learning-based
pre-operative and post-operative knee radiograph analysis, with 220 and 120
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(a)

Fig. 4. An illustration of the two calculation methods of the point-based KA measure-
ments in (a) pre-operative and (b) post-operative images. In both (a) and (b), FTS fits
a red center line to the femur and tibia by connecting two shaft center points (femur:
the mid-points of the red and yellow point pairs; tibia: the mid-points of the black and
blue point pairs), whereas FNTS fits a blue line to the femur by connecting a shaft
center point (mid-point of the red point pair) to a femoral notch point (mid-point of the
purple point pair), and to the tibia by connecting two shaft center points (mid-points
of the black and blue point pairs). The blue lines may overlap the red lines.

epochs for global search and 800 and 600 epochs for local search, respectively.
Global search models were trained on NVIDIA Tesla V100 GPUs, while local
search models were trained on NVIDIA A100 GPUs. The network widths (initial
numbers of channels) were 32 and 256 for global and local search, respectively.
Wing loss [11] was applied to emphasize small errors, and the model was opti-
mized with Adam [12] using a learning rate of 0.0001.

3.2 Results

Landmark Localization We evaluated our landmark localization approach us-
ing relative point-to-point (rP2P) and relative point-to-curve (rP2C) distances.
P2P is the Euclidean distance between a predicted and manual ground-truth
point, and P2C is the distance between a predicted point to the bone bound-
ary based on the ground truth points. Both metrics are computed per point
and averaged across all points within an image. The relative distances were
calculated to show the percentage of the reference length (tibial shaft width)
defined by the distance between the two landmarks at the corners of the tibial
plateau (see yellow points in Fig. 2). We had access to the pre-operative and
post-operative RFRV-CLM models from [13] to compare the landmark detec-
tion accuracy with our approach. The results are summarized in Table 1. We
found that our hourglass-based method could localize the knee landmarks more
accurately and robustly than [13] with lower rP2P and rP2C distances.

Alignment Measurement Intra-class corelation coefficient (ICC), mean ab-
solute difference (MAD), and Bland-Altman analysis (BAA) were used to assess
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Table 1. Quantitative comparison of pre-operative and post-operative landmark lo-
calization accuracy in AP knee radiographs between the proposed method and [13].
The relative point-to-point (rP2P) and relative point-to-curve (rP2C) distances were
calculated to show the percentage of the reference length (tibial shaft width) defined
by the distance between the two landmarks at the corners of the tibial plateau (see
yellow points in Fig. 2).

rP2P rP2C
Mean|Median|95%ile|Mean|Median |95%ile
RFRV-CLM [13] [4.1%| 3.4% | 9.5% |1.1%| 0.6% | 2.1%
This study 1.7%| 1.6% | 2.5% [0.6%| 0.5% | 0.8%
RFRV-CLM [13] [3.6% | 2.5% |11.7%|1.3% | 0.6% | 9.0%
This study 1.6%| 1.6% | 2.4% [0.4%| 0.4% | 0.6%

Data Method

Pre-operative

Post-operative

the agreement between the automated measurements generated from the auto-
matically localized landmark positions and the two sets of ground truth measure-
ments. Higher ICC and lower MAD or BAA bias indicate better performance.
In Table 2, we summarize the results of our KA measurement experiments, and
compare the results to those presented in [13].

FTS When analyzing the agreement between manual/clinical and automated
measurements (Table 2), the pre-operative ICC values showed excellent agree-
ment (>0.9), whereas the post-operative ICC values showed good agreement
(0.75-0.9). The MAD values indicated minimal deviations (~1°) pre-operatively
and post-operatively. The BAA showed no bias (<1°). Our method outper-
formed [13] in most cases, except for the post-operative ICC value between
manual and automated measurements.

FNTS When analyzing the agreement between manual/clinical and automated
measurements (Table 2), only the post-operative ICC value between clinical and
automated measurements showed good agreement (0.75-0.9), while other ICC
values showed excellent agreement (>0.9). The MAD values indicated minimal
deviations (~1°) pre-operatively and post-operatively. The BAA showed no bias
(<1°). Our method outperformed [13] with a higher ICC value, as well as lower
MAD value and similar BAA bias.

In most cases, FNTS demonstrated better agreement than FTS except for
the post-operative agreement between clinical and automated measurements.

4 Discussion and Conclusion

We developed an automated system to localize knee anatomical landmarks and
measure KA. To our knowledge, this is the first deep learning-based system to
localize over 100 knee landmarks, fully outlining the knee joint while integrating
KA measurements on AP knee radiographs. Our results on pre-operative and
post-operative images from 376 TKR patients show that our hourglass-based
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Table 2. Agreement between automated and manual/clinical aTFA measurements
calculated by FTS and FNTS. The best performances, compared with clinical mea-
surements, are highlighted with *. (Pre-op: Pre-operative; Post-op: Post-operative; M:
manual; A: automated; C: clinical; ICC: intra-class correlation coefficient; MAD: mean
absolute difference; BAA: Bland-Altman analysis; n: number of individuals; CI: confi-
dence interval; SD: standard deviation)

ICC MAD BAA

Value| CI 95% |Value|SD | Bias |SD
Pre-op M and A (n=376) | 0.97 |(0.96, 0.97)| 1.0° |1.3°| 0.2° |1.6°
RFRV- |Post-op M and A (n=376)| 0.88 |(0.86, 0.90)| 0.9° [1.1°| 0.2° |1.4°
CLM [13]|Pre-op C and A (n=50) |0.95 [(0.91, 0.97)| 1.4° [1.4°|-0.8°[1.8°
Post-op C and A (n=50) | 0.78 |(0.67, 0.86)| 1.5° |1.3°| 0.5° |2.0°
Pre-op M and A (1—376) | 0.99(0.99, 0.99)[ 0.6° [0.7°| 0.1° [L.0°
This |Post-op M and A (n=376)| 0.83 {(0.80, 0.86)| 0.6° |1.6°| 0.0° [1.7°
study |Pre-op C and A (n=50) | 0.95((0.91, 0.98)| 1.3° |1.3°|-0.8°|1.7°
Post-op C and A (n=50)* | 0.86 |(0.76, 0.92)| 1.0° |1.3°| 0.2° |1.6°
Pre-op M and A (n=376) | 0.98 [(0.97, 0.98)| 0.8° |1.1°| 0.2° |1.4°

( )

( )

( )

( )

( )

( )

( )

aTFA | Method Agreement

FTS

RFRV- [Post-op M and A (n=376)| 0.92 |(0.90, 0.93)| 0.8° [0.8°|0.1°|1.1°
CLM [13] |Pre-op C and A (n=50) |0.97 [(0.95, 0.98)| 1.2° [1.0°| 0.1° [1.6°
Post-op C and A (n=50) | 0.71 |(0.56, 0.81)| 1.7° |1.5°| 0.8° |2.2°
Pre-op M and A (n=376) | 0.99[(0.99, 0.99)| 0.6° [0.6°[ 0.0° [0.8°
This |Post-op M and A (n=376)| 0.96 |(0.95, 0.97)| 0.5° [0.6°| 0.1°|0.7°
study |Pre-op C and A (n=50)* |0.97((0.95, 0.98)| 1.2° [1.0°| 0.1° |1.6°
Post-op C and A (n=50) |0.81((0.69, 0.89)| 1.2° |1.4°| 0.5° [1.7°

FNTS

system achieves consistently improved performance in localization accuracy com-
pared with [13].

The system demonstrates excellent accuracy and reliability in measuring
varus/valgus KA. Our method achieves better performance than [13] except
for the post-operative ICC value between manual and automated measurements
when calculating the aTFA with FTS. Post-operative agreement is lower than
pre-operative agreement in terms of ICC, especially when comparing clinical and
automated measurements, likely due to anatomical changes from TKR not cap-
tured well by our point-based definitions. The automated measurements show a
higher agreement with the manual measurements compared to the clinical mea-
surements, possibly because of additional considerations in clinical practice like
limb deformities instead of only using point position-based information. When
calculating the aTFA, incorporating the femoral notch information can improve
the overall reliability except when assessing the post-operative agreement be-
tween clinical and manual measurements.

As clinical measurements of only a single expert were used as reference in this
study, additional clinical measurements should be added to analyze the clinical
variation in the future. A limitation of this study is that the system has not been
tested for generalizability on another dataset. It would be of interest to use our
trained models to generate KA measurements on an independent dataset.
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KA is strongly associated with TKR outcomes. For example, both varus and
valgus post-operative malalignment were found to be associated with a higher
incidence of revision surgery in several studies [19, 4, 5]. Future work will explore
the relationship between KA measurements and TKR outcomes, aiming to pre-
dict surgical outcomes such as chronic pain or revision surgery in advance based
on KA measurements in knee radiographs. In addition, the automatically local-
ized landmark positions enable more complex analysis of knee joint shape and
alignment (e.g. via Statistical Shape Models [20]), beyond what can be currently
captured by a set of geometric measurements. This opens up opportunities for
better use of the information contained in AP knee radiographs, enabling more
efficient and appropriate treatment decisions.
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