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Abstract. We introduce BridgeSplat, a novel approach for deformable
surgical navigation that couples intraoperative 3D reconstruction with
preoperative CT data to bridge the gap between surgical video and vol-
umetric patient data. Our method rigs 3D Gaussians to a CT mesh,
enabling joint optimization of Gaussian parameters and mesh deforma-
tion through photometric supervision. By parametrizing each Gaussian
relative to its parent mesh triangle, we enforce alignment between Gaus-
sians and mesh and obtain deformations that can be propagated back
to update the CT. We demonstrate BridgeSplat’s effectiveness on vis-
ceral pig surgeries and synthetic data of a human liver under simula-
tion, showing sensible deformations of the preoperative CT on monoc-
ular RGB data. Code, data, and additional resources can be found at
https://maxfehrentz.github.io/ct-informed-splatting/.
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1 Introduction

Laparoscopic surgery has shown the potential to lower complication rates, shorten
hospital stays, and be cost-effective while maintaining R0 resection rates and
showing no adverse effects on 90-day mortality [3]. However, it also comes with
challenges, as tactile feedback is limited, spatial understanding is demanding,
handling is challenging, and learning curves are flat. To mitigate those issues,
Augmented Reality (AR) has been proposed to overlay relevant information
from preoperative scans with little interruption to the clinical workflow. The
potential for AR-guided (minimally invasive) interventions in visceral surgery
has been demonstrated for the liver [1] , kidney [10] , pancreas [21] , and spleen
[18]. Although the results are promising, those methods either stop at a rigid
registration or require interruption of the surgical workflow for surgeon interac-
tion (e.g., outlining contours). Continuous non-rigid registration is still an open
challenge.

https://maxfehrentz.github.io/ct-informed-splatting/


2 M. Fehrentz et al.

Thinking from first principles, we would like a system that can reconstruct the
intraoperative scene in real time while also estimating the camera pose. There-
fore, much effort has been directed at non-rigid SLAM for surgery [14,12,17].
Despite all the progress on SLAM, as concluded in [13], tracking of the camera
is still desirable, if not necessary, to move towards clinically feasible systems.

For posed cameras in surgical scenes, methods capable of 4D reconstruction
for dynamic photorealistic novel view synthesis have emerged. Those methods
are grounded in NeRF [20] and 4D Gaussian Splatting (4DGS) [24,9,8,22,7].
Prior work has been done based on both NeRF and 4DGS to go beyond mere re-
construction and towards intelligence, tracking the surgical scene [4,6]. However,
NeRF does not have an explicit representation, and 4DGS is usually not bound
to a surface. Attempting a monocular single-view reconstruction commonly leads
to artifacts like floaters in the view frustum that allow overfitting on the individ-
ual observations but do not guarantee a meaningful 3D reconstruction of tissue
over time, despite high image reconstruction quality.

In [19], the authors propose to extract a preoperative 3D model, equip it
with a biomechanical model, and perform an initial rigid registration based on
an intraoperative point cloud acquired with stereo depth. To allow for a non-rigid
registration, they track the registered structure and deform the biomechanical
model, using optical flow. Also building on biomechanical models, the authors
in [2] propose a CNN for non-rigid registration.

Although some of the introduced methods leverage selected 3D information
from preoperative scans, none of them is directly coupled to the preoperative
scan, using the entire 3D prior for guiding the reconstruction and enabling direct
deformation propagation to the CT.

Contribution We deform a preoperative CT from an intraoperative monocular
RGB video. By rigging Gaussians to a registered CT mesh, we constrain the
ill-posed monocular reconstruction problem through a canonical space prior, re-
solving the depth ambiguity. This reframes the problem of non-rigid registration
from a non-rigid reconstruction to a non-rigid tracking problem with the pre-
operative CT as template. Unlike existing 4D Gaussian Splatting methods, our
approach is bound to patient-specific anatomy, and its deformations are directly
coupled to the CT.

2 Method

2.1 Problem Formulation

We start with a preoperative mesh M of the abdominal cavity, obtained from
the preoperative CT. At the beginning of surgery, a rigid registration TCT is
performed to align the CT (and thus M) with the patient. We then introduce
a set of 3D Gaussians, which are rigged onto the registered mesh TCTM. The
3D Gaussians have learnable parameters Θt = {µt, αt, Σt, ct}: means µt,
transparencies αt, covariance matrices Σt, and spherical harmonic coefficients
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Fig. 1: We initialize 3D Gaussians by rigging them onto the registered mesh,
extracted from the preoperative CT. Given the first camera pose, we identify
the visible Gaussians, derive the visible vertices, and subsample them to initial-
ize a sparse deformation field. For all consecutive frames, we optimize for the
mesh vertices, the deformation vectors, and the appearance properties of the 3D
Gaussians. Deformations are propagated to the CT.

ct. Additionally, a deformation field θt is defined to capture mesh deformations
over time.

During surgery, a tracked laparoscope provides images It from known camera
poses Pt. Our main objective is to minimize a photometric energy term Ephoto

between the observed image It and a rendered image Ît via 3D Gaussian Splatting
of the deformed mesh and its rigged 3D Gaussians. Formally, we seek to solve:

argmin
θt, Θt

Ephoto = argmin
θt, Θt

∥∥∥ It − Ît
(
Pt, θt(TCTM), Θt

)∥∥∥. (1)

where θt deforms the registered mesh TCTM. Solving this over time yields
dynamic 3D Gaussians, commonly referred to as 4D Gaussian Splatting.

2.2 Coupling 3D Gaussians and Mesh

Unlike conventional 3D Gaussian Splatting methods that treat the means µt and
covariances Σt as unconstrained parameters, we tightly anchor our Gaussians
to the mesh, inspired by GaussianAvatars [11]. Specifically, each triangle f i of
the deformed mesh θt(TCTM) holds one or more Gaussians whose means are
expressed via optimizable barycentric coordinates:

µi
t =

3∑
k=1

bi,k
t vi,k

t , with
3∑

k=1

bi,k
t = 1, bi,k

t ≥ 0, (2)

where vi,k
t = θt

(
vi,k
init

)
are the vertices of triangle f i after deformation, and

bi
t = (bi,1t , bi,2t , bi,3t ) are the barycentric coordinates for the i-th Gaussian. By
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enforcing nonnegative bi,k
t that sum to 1, the mean µi

t cannot leave the parent
face. This is in contrast to GaussianAvatars, where Gaussians are allowed to
wander off the surface for enhanced visual fidelity. In our case, however, we try to
estimate mesh deformations from single-view monocular RGB input. Therefore,
we have to ensure that what we render is closely related to what the mesh
actually represents, otherwise, Gaussians can satisfy the photometric energy by
roaming and stretching freely beyond their parent triangles without the mesh
having to deform.

For Σi
t, we decompose the covariance into a rotation (orientation) and an

anisotropic scale. In particular, we fix the Gaussian’s orientation qi
t to align

with the triangle’s normal, thus keeping the Gaussian aligned with the surface
of its parent triangle. The corresponding scale vector sit has only two freely
optimizable components, the component in normal direction is fixed to a small
constant. We further cap the remaining scales to keep them within a factor of the
initial scale, which is computed from a mesh-dependent heuristic. This prevents
the Gaussians from stretching significantly beyond their parent triangles.

2.3 Deformation Field

As shown in Equation (2), the means of the Gaussians are parametrized w.r.t
to M by the barycentric coordinates and a sparse deformation field θt for each
timestep t that is acting on the mesh. We mostly follow the deformation field
parametrization as proposed in [6]. However, instead of defining control points
based on anchor 3D Gaussians, we choose control vertices. For the first frame,
we perform a single render to check for visible 3D Gaussians. We can trace
those back to their parent faces and obtain all visible vertices. We then choose
a random subset of anchor vertices a1, ...,ak ∈ M, where each anchor vertex
has a learnable deformation δ1, ..., δk ∈ R3. It provides continuous deformations
through interpolation as described in [6]. Note that choosing initially visible
vertices as anchors comes with the downside of modeling deformations only in
a fixed field of view and its adjacency. For our short sequences, this is not an
issue. For more extensive camera sweeps, the method can be easily extended to
continuously check for visibility and add control vertices as the camera moves.

2.4 Non-rigid Regularization

To regularize the deformations, we employ an As-Rigid-As-Possible (ARAP)
term EARAP [15]. Note that this would be infeasible in a mesh-free approach,
since ARAP inherently uses mesh topology and cannot be applied directly to
unconstrained Gaussian Splatting. Following [6], we additionally penalize relative
position changes of neighboring vertices and deformations in currently invisible
areas.

For clarity, we omit the time dependency in the notation below. ARAP op-
erates on a set of deformed vertices {v′

1, . . . ,v
′
n} ⊂ R3 of a deformed mesh

Mdeform. For each vertex v′
i ∈ R3, ARAP measures the discrepancy between the

edges in Mdeform and the corresponding edges in the original mesh M under an
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estimated rotation Ri ∈ SO(3) for each vertex. This encourages local transfor-
mations to remain as rigid as possible. In its standard formulation, ARAP is
usually driven by a small number of known control points, and the minimization
of EARAP proceeds via a flip-flop scheme: first, one estimates the per-vertex ro-
tations {R1, . . . ,Rn} ⊂ SO(3) using SVD, then one updates the vertex positions
{v′

1, . . . ,v
′
n} ⊂ R3 by directly solving a linear system. In our approach, we first

set {v′
1, . . . ,v

′
n} = θ(M). Then, we simply compute the rotations {R1, . . . ,Rn}

via SVD as proposed in the original ARAP. However, we do not solve for the
optimal vertex positions directly. Instead, we compute ∇v′

i
EARAP as derived in

the original ARAP paper and use this term in our gradient-based optimization.

3 Experiments and Results

We evaluate our method on two datasets. Given that intraoperative data does
not come with ground truth deformations, we simulate tool-tissue interaction
sequences to evaluate our method quantitatively. To demonstrate its ability to
operate on clinical data and deform a CT, we use a second dataset from visceral
pig surgeries. All experimental protocols were approved by the local Ethical Com-
mittee on Animal Experimentation. Since no comparable methods are available,
we cannot compare against a state-of-the-art. Whereas other 4DGS methods
are primarily concerned with high-quality novel view synthesis, we focus on the
deformation of the mesh and CT and therefore do not compare image recon-
struction metrics. Results are best viewed in video format, we refer the reader
to the supplementary material.

Quantitative Evaluation on Simulated Data We generate five synthetic
tool-tissue interactions on a human liver, using DejaVu simulation [5]. DejaVu
provides realistic surgical scenes by transferring the appearance of real surgical
images to physics-based simulations. The deformations are computed using the
Finite Element Method in SOFA [16]. Examples are shown in Figure 2.

Fig. 2: Example sequence of a simulated DejaVu [5] scene: on top, the textured
mesh, tool, and a realistic background, underneath the 3D model colorized based
on stress.
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For each sequence, we perform 45 simulation steps. We have an initial mesh
and at each step in the simulation, we extract the image without the surgical
tool, corresponding camera parameters, and the underlying mesh ground truth.
We generate five different force profiles, yielding five simulated sequences with
45 images, camera parameters, and mesh ground truths each. To cover a wide
range of interactions, we choose a different predominant manipulation in each
sequence: pushing into the liver (SimIn), pulling to the left (SimLeft), pulling
down (SimDown), dragging in a circular motion (SimCircular), and pulling up
(SimUp).

We run our method on the five sequences and in each simulation step, we
compute the Euclidean distance between each vertex in our deformed mesh and
the corresponding vertex in the ground truth mesh. For each simulated sequence,
we compute the average Euclidean distance, its standard deviation, and the
maximum Euclidean distance. As reported in Table 1, we stay within a 5 mm
error margin and observe only slight deviations in accuracy across the different
interactions, indicating that our method can handle in-plane (e.g., SimLeft) and
out-of-plane deformations (e.g., SimIn). A selection of tracked deformations on
the DejaVu dataset is shown in Figure 3.

Table 1: Quantitative evaluation on the DejaVu dataset with Euclidean distance
and maximum error (in mm) on five simulated tool-tissue interaction sequences.

Metric SimIn SimDown SimLeft SimCircular SimUp

Euclidean Distance (mm) 0.11±0.19 0.14±0.27 0.09±0.16 0.10±0.19 0.12±0.24
Max Euclidean Distance (mm) 3.17 4.29 2.78 4.15 2.84

Fig. 3: Exemplary results on a simulated DejaVu [5] sequence. Rows top to bot-
tom: input image with surgical tool and background image removed, rendered
image from Gaussian Splatting, and deformed mesh. The first column shows the
first step of the sequence, where some of the Gaussians still have random colors.
See video in the supplementary material.
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Qualitative Evaluation on Clinical Data To demonstrate the effectiveness
of our method on clinical data, we use a dataset of two visceral pig surgeries
with a preoperative post-insufflation CT, initial rigid registration, a tracked la-
paroscope, and corresponding 2D monocular RGB videos. Surgical tools were
masked out using SurgicalSAM [23]. The first sequence from the first surgery
shows a tool-tissue interaction, whereas the second one shows a breathing mo-
tion without external manipulation. Because there is no deformed ground truth,
as measuring intraoperative deformation would require intraoperative scanning,
we demonstrate qualitative results.

Figure 4 shows results on the tool-tissue interaction. The surgical tool presses
down on the stomach, leading to the deformations tracked in the deformed mesh
and CT (bottom rows). Although the difference in pressure applied between
B and C appears marginal, we successfully track the increasing deformation,
the difference being visible in both mesh and CT. For D and E, the tool is
repositioned, now pulling the stomach back. Note how this backward pull is
visible in the respective deformed CTs by a deformation to the right, since the
laparoscope captures the scene roughly in the coronal plane, whereas the CT
slice is shown in the sagittal plane.

Fig. 4: Examples from a tool-tissue interaction sequence. Rows from top to
bottom: input images acquired by the laparoscope, images rendered with our
method, deforming mesh, and deforming CT. Arrows in A point to the deform-
ing anatomical structure, circles in B highlight the area of deformation, and
arrows in E visualize the pull direction. See video in the supplementary mate-
rial.
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Since we rely on an initial registration, we are also subject to registration
errors. There is a slight misalignment between the structure being manipulated in
the input images (stomach) and the deforming mesh. Also note that we initialize
our mesh from a post-insufflation CT, ensuring that the initial mesh and the
intraoperative state early in surgery are still very similar. Initializing the method
from video sequences later in the procedure cannot be handled by the method
if significant deformation has already occurred or large structures have already
disappeared entirely. Regarding the deformation of the CT, we can only capture
surface deformations by deforming our mesh. A more realistic deformation of
deeper layers would require biomechanical modeling. Apart from those caveats,
the method does not work in real time yet. Depending on image resolution,
processing of a frame takes several seconds on an NVIDIA RTX A4000. Given
the strides being made in the 3D computer vision community around 4DGS, we
are confident that this problem will be solved soon. Despite those limitations,
the deformations of the stomach in the CT are sensible and correspond to the
tool-tissue interaction as confirmed by a board-certified surgeon.

Coming from our clinical motivation, we also demonstrate potential dynamic
overlays in Figure 5 for the sequence of the second surgery, displaying breathing
motion. The overlays improve over the initial rigid registration, demonstrating
the method’s ability to pick up on subtle deformations.

Fig. 5: Top row: overlays based on rigid registration. Bottom row: deformed over-
lays with our method. Deformations are subtle (see video).

4 Conclusion

In this paper, we have demonstrated for the first time that a direct coupling
between CT and 4D Gaussian Splatting is possible to deform preoperative vol-
umetric patient data during surgery. By blending the concepts of 4D Gaussian
Splatting and deforming 3D meshes, we have shown that a mesh of the abdom-
inal cavity can serve as an effective intermediary to capture changes observed
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through the laparoscope and relay them directly to the CT. We have evalu-
ated our method on synthetic and clinical data, demonstrating that its accuracy
meets clinical needs on simulated data and performs well under real conditions in
visceral pig surgeries. Strikingly, this is possible on 2D RGB data even without
the need for stereo laparoscopes or any depth information.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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