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Abstract. Due to the complex and resource-intensive nature of diagnos-
ing Autism Spectrum Condition (ASC), several computer-aided diagnos-
tic support methods have been proposed to detect autism by analyzing
behavioral cues in patient video data. While these models show promis-
ing results on some datasets, they struggle with poor gaze feature perfor-
mance and lack of real-world generalizability. To tackle these challenges,
we analyze a standardized video dataset comprising 168 participants with
ASC (46% female) and 157 non-autistic participants (46% female), mak-
ing it, to our knowledge, the largest and most balanced dataset avail-
able. We conduct a multimodal analysis with a primary focus on gaze
behaviour, complemented by facial expressions, voice prosody, head mo-
tion, heart rate variability (HRV). Addressing previous limitations in
gaze modeling, we introduce novel statistical descriptors that quantify
variability in eye gaze angles, improving gaze-based classification accu-
racy from 64% to 69% and aligning computational findings with clinical
research on gaze aversion in ASC. Using late fusion, we achieve a classi-
fication accuracy of 74%, demonstrating the effectiveness of integrating
behavioral markers across multiple modalities. Our findings highlight the
potential for scalable, video-based screening tools to support autism as-
sessment. To facilitate reproducibility, we share our code on GitHub:
https://github.com/mbp-lab/miccai25_sit_autism_classification.

Keywords: Autism Detection · Machine Learning · Multimodal Anal-
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1 Introduction

Impairments in social communication are a key characteristic of Autism Spec-
trum Condition (ASC), affecting an individual’s ability to interpret and respond
to non-verbal cues such as facial expressions, eye contact, and vocal tone [1].
The clinical diagnosis of ASC currently relies on subjective assessments, in-
cluding standardized instruments (e.g., Autism Diagnostic Observation Schedule
(ADOS), the Autism Diagnostic Interview-Revised (ADI-R) [9]), which are time
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consuming and depend on the availability of experts. This often leads to long
waiting times and potential misdiagnoses, particularly in adults and females who
may present atypical symptoms [23,19]. This highlights the urgent need for ob-
jective, scalable, and accessible tools to support autism screening and behavioral
assessment.

Recent advancements in machine learning (ML) have enabled the automated
analysis of non-verbal behaviors to assist with ASC detection via video-based
approaches [5]. Studies have analyzed facial expressions [8], gaze behavior [4,20],
and prosodic features [7] to identify ASC-related patterns. These approaches can
complement existing diagnostic frameworks and facilitate early detection, remote
screening, and large-scale behavioral studies. However, despite this progress,
significant challenges remain.

Most datasets used for computer-aided ASC assessment include children,
aiming for early diagnosis [21,6]. However, ASC is often undiagnosed until adult-
hood, particularly in females and individuals with milder traits [16]. Datasets
with adult populations remain scarce, and existing ones, such as [15], have limited
sample sizes (58 individuals) and feature sets. Moreover, most datasets are col-
lected in highly controlled laboratory environments, limiting model robustness
in naturalistic settings. Additionally, many data types, such as neuroimaging,
molecular, and genetic data, require expensive equipment, creating development
and deployment challenges of AI-based tools for ASC assessment.

Social interaction is multimodal, involving gaze, facial expressions, vocal
prosody, and body movements [25]. While multimodal ML models have improved
classification accuracy [28,10], many over-rely on facial features, underutilizing
other modalities, such as gaze behavior.

Atypical gaze is a well-established ASC marker [24,18]. Reduced eye contact
and increased gaze aversion have been observed across lab-based and naturalistic
settings [26]. While some studies have successfully used eye-tracking devices to
analyze gaze behavior in ASC [17], these approaches often rely on specialized
hardware or controlled experimental tasks rather than naturalistic social inter-
actions. Webcam-based interaction analyses, such as [12,27], have reported poor
performance for gaze-based ASC classification, likely due to simplistic descrip-
tors that fail to capture gaze behavior in relation to social stimuli.

Several studies suggest heart rate variability (HRV) as a biomarker for ASC
due to its link to autonomic nervous system function. Research indicates that
individuals with ASC often exhibit autonomic dysregulation, characterized by
both hyperarousal and hypoarousal states at rest, which may impact their abil-
ity to engage with social environments and regulate sensory input[2]. [30,31]
found significantly lower resting-state HRV in both adults and children with
ASC. [14] applied machine learning to HRV data, achieving an AUC of 0.89 for
ASC classification. While HRV shows promise as a non-invasive biomarker, its
role in ASC remains complex, with findings influenced by measurement context,
heterogeneity in study methodologies, and individual variability[2].

To address the challenges of subjective ASC diagnosis, limited dataset avail-
ability for adults, and the underutilization of key social interaction markers, we
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improve computer-aided autism detection by evaluating multimodal behavioral
markers using the largest adult social interaction dataset to date. To establish
this dataset, we used the Simulated Interaction Task (SIT) [11,12], a standard-
ized paradigm designed to elicit social behaviors by presenting participants with
a video-recorded conversational partner. Unlike prior studies using lab-based,
child-focused datasets, we included adult participants in both clinical and home
settings, providing a more valid dataset. To our knowledge, this is the largest
and most balanced dataset available.

Our approach primarily introduces enhanced gaze behavior descriptors along-
side facial expression, head movement, voice prosody, and heart rate variability
(HRV) features to improve diagnostic performance. We systematically evalu-
ate unimodal and multimodal feature combinations, emphasizing gaze features
due to their significant improvement and clinical relevance in ASC detection.
By combining behavioral analysis with computational modeling, our work helps
bridge the gap between computer-aided ASC detection and clinical practice, con-
tributing to the development of scalable, non-invasive screening tools for diverse
populations.

2 Methods

2.1 Dataset

We expanded our video dataset using the Simulated Interaction Task (SIT)
paradigm [12], combining newly collected participants with those from a previous
study. The final dataset includes 168 individuals with ASC (46% female) and 157
controls (46% female), recorded across clinical (n = 254) and home (n = 71) en-
vironments, representing one of the largest and most gender-balanced collections
for adult social interaction analysis to date. Lab study participants were recruited
for a larger research project (number DRKS00017817). Inclusion criteria: age
18–65, IQ ≥80, fluency in German, and stable or no pharmacotherapy. Exclusion
criteria included psychiatric comorbidities of schizophrenia, psychosis, severe
depression, acute manic episodes within bipolar disorder, and acute suicidality.
ASC diagnoses were confirmed by licensed clinicians using ICD-10 criteria, while
the non-autistic participants reported no psychiatric diagnoses. Home-study par-
ticipants were recruited via clinics, therapy groups, and online postings. ASC di-
agnoses were confirmed via medical records. Comorbid conditions (e.g., ADHD,
Social Anxiety Disorder, Major Depression) were documented but not excluded,
allowing us to capture ASC-related interaction traits in a clinically representative
sample. The studies were approved by the respective ethical committee of Hum-
boldt University of Berlin and the Medical Center-University of Freiburg (ap-
proval 20-1144_3 and 2021-20, https://doi.org/10.1186/s13063-021-05205-9).

Procedure Participants completed the SIT application on a computer in lab
or home settings. The fully automated procedure began with head positioning
for facial landmark calibration. The conversation scenario included three phases:

https://doi.org/10.1186/s13063-021-05205-9


4 W. Saakyan et al.

Table 1. Gender (male, female, diverse) and age distributions by setting and group.

Study Setting ASC Non-ASC ASC Age Non-ASC Age Total
M F D M F Median Range Median Range

Home 13 13 - 24 21 36 18-57 27 18-60 71
Lab 74 65 3 60 52 34 18-63 35 18-64 254
Total 87 78 3 84 73 - - - - 325

Meal preparation ("Neutral"), Favorite foods ("Joy"), and Disliked foods ("Dis-
gust"). Each phase consisted of two interactions: the actress speaking while the
participant listened, followed by the participant speaking while the actress dis-
played empathic listening.

2.2 Preprocessing

To ensure consistency with previous research [27], we applied the same video
preprocessing pipeline: For videos with frame rates between 15 and 25 FPS, we
applied linear interpolation to achieve a uniform 30 FPS frame rate. Videos with
frame rates below 15 FPS were excluded from analysis due to motion artifacts.

2.3 Features

We extracted non-verbal features from following modalities: facial expressions,
gaze, head movement, paralinguistics, and HRV, using open-source libraries.

Feature extraction was performed across six interaction phases, correspond-
ing to three emotion-specific segments (neutral, joy, disgust) and two speaking
roles (participant speaking and participant listening). Audio features were ex-
tracted only from participant-speaking segments, while HRV signals were ex-
tracted primarily during listening segments to minimize motion artifacts.

Visual Visual features were extracted using OpenFace 2.2 [3], which detects
Action Units based on the Facial Action Coding System, head position (rotation
angles: pitch, yaw, roll), and gaze direction (angle x and y). Frames with a
detection confidence below 75% were excluded. Participants with more than
10% invalid frames were removed (five in total).

Facial expression: OpenFace computes 18 AUs, each with a presence score
(binary) and an intensity score (0–5). We calculated the mean, median, and
standard deviation of the AU intensities in each of the six interaction phases,
as well as the mean AU presence. Additionally, we computed the AU onset
frequency, which is the number of activation onsets (transitions from 0 to 1) per
phase.

Head movement metrics, including velocity, acceleration, and stability du-
rations, were calculated as in previous work [27], along with the mean and stan-
dard deviation of yaw and roll rotation angles. Additionally, we included the pitch
angle and, to mitigate potential gender and height biases, normalized the values
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based on each participant’s median pitch angle. To provide a robust measure
of spread, we computed the interquartile range (IQR) alongside other summary
statistics. Furthermore, we implemented a nod detection algorithm that scans
the pitch trajectories for characteristic downward-upward sequences occurring
within 1.5-second windows.

Gaze behavior: Following [27], we computed gaze movement velocity, accel-
eration, saccade amplitude, and fixation duration, as well as the mean and stan-
dard deviation of the x angle. Additionally, we included statistics for the y angle,
which was normalized relative to each participant’s median y angle to mitigate
height-related biases. To move beyond angle-based gaze descriptors and capture
socially meaningful gaze behavior, we implemented a geometric transformation
that maps gaze angles from the webcam coordinate system to a screen-centered
coordinate space. For lab participants, this transformation involved measuring
camera-to-screen distance, eye-to-screen distance, and screen resolution to deter-
mine gaze position relative to the screen. For home participants, gaze position
was approximated. From these transformed coordinates, we computed: Mean
screen fixation time (proportion of frames with gaze directed toward the screen
area containing the actress’s face), Number of off-screen fixations (frequency
of gaze shifts beyond screen boundaries, indicating gaze aversion), Euclidean
distance from the screen center (mean, standard deviation, skewness, kurtosis,
minimum, and maximum distance from the actress’s face).

Audio Paralinguistic features from the voice were extracted using OpenSmile
3.0 [13] with the eGeMAPSv02 feature set [33]for each participant-speaking
phase. Extracted features include pitch (mean, variance), intensity, shimmer,
jitter, harmonic-to-noise ratio (HNR), and formant frequencies.

Heart rate HR features were extracted using the rPPG Toolbox [22], apply-
ing face cropping and the Plane-Orthogonal-to-Skin (POS) method to estimate
remote photoplethysmographic (rPPG) signals. HeartPy was used to extract
HR features from the rPPG signals. HR signals were extracted during listen-
ing phases to minimize motion artifacts. The rPPG Toolbox failed to extract
certain feature values for 18 participants. We imputed the missing values using
the median from the training set. Features included mean HR, HR variability
(HRV), root mean square of successive differences (RMSSD), and low-frequency
to high-frequency power ratio (LF/HF).

2.4 Classification and analysis

We used XGBoost, a gradient boosting decision tree model, which shows its
effectiveness in handling structured tabular data[29]. Model parameters were
set to default XGBoost settings, to ensure comparability with [27]: gbtree as
booster, learning rate of 0.3, maximum depth of tree was 6, XGBoost version
2.0.3. The classification task aimed to differentiate between individuals with ASC
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and non-autistic individuals using the extracted multimodal features. We calcu-
lated performance metrics, including accuracy, precision and recall and com-
pared unimodal models, where each modality was evaluated separately, with
multimodal fusion approaches. Early fusion involved concatenating all extracted
features into a single feature vector. In the late fusion approach, we combined
the probability scores from unimodal models and classified them using logistic
regression, incorporating polynomial features (degree 2) to capture non-linear re-
lationships and interactions. All analyses reported in this paper were evaluated
using a participant-based Leave-One-Out Cross-Validation [32] approach.

To gain deeper insights beyond overall model performance, we conducted sev-
eral follow-up analyses. First, we applied SHapley Additive exPlanations (SHAP)
to identify the key features contributing to ASC classification. Second, we per-
formed a statistical analysis of misclassifications to determine whether errors
were influenced by dataset source (home vs. lab), participant gender, or Autism
Spectrum Quotient (AQ) score. Lastly, we assessed the contribution of each
modality by systematically excluding them in late fusion setting.

3 Results and Discussion

3.1 Model performance

We conducted a comprehensive uni- and multimodal video analysis using ma-
chine learning on a large dataset of 325 participants, balanced by gender and col-
lected across diverse settings (home and clinical environments). Table 2 presents
classification performances, while Figure 1 illustrates the corresponding ROC
curves. Our refinement of gaze features led to the most notable improvement,
increasing accuracy by 5 percentage points compared to previous works using a
similar approach. Additionally, enhanced feature engineering for the head modal-
ity resulted in a 2-point accuracy gain. Multimodal late fusion achieved the high-
est classification accuracy of 74%, outperforming the feature set of prior work
by 6 percentage points.

Table 2. ASC classification performance for different modalities using the previous[27]
and current feature sets. Bold values indicate the highest accuracy per modality.

Modality Previous Feature Set Current Feature Set
Accuracy Precision Recall Accuracy Precision Recall

Multimodal (late) 0.68 0.69 0.68 0.74 0.76 0.74
Multimodal (early) 0.67 0.67 0.71 0.68 0.68 0.71
Facial expression 0.70 0.70 0.73 0.70 0.71 0.73
Audio 0.66 0.67 0.66 0.66 0.67 0.66
Gaze 0.64 0.66 0.64 0.69 0.70 0.68
Head 0.63 0.64 0.66 0.65 0.66 0.68
HR - - - 0.57 0.58 0.63
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3.2 Gaze Behavior Analysis

Prior computational studies have reported inconsistent results regarding gaze
behavior in ASC [12,27], despite psychological research suggesting its diagnos-
tic relevance [18,20]. These discrepancies are likely due to simplistic angle-based
descriptors that fail to fully capture gaze aversion patterns. In our analysis,
gaze behavior exhibited the largest performance gain among unimodal models,
demonstrating the effectiveness of our new screen-centered descriptors in captur-
ing gaze aversion. Figure 2 presents the SHAP analysis, identifying gaze distance
variability from the screen center as the most influential feature. On the right
side, we visualize eye gaze angles projected onto the screen surface, further il-
lustrating these differences. Our results confirm that ASC participants exhibit
significantly greater gaze variability than non-autistic individuals (+63.5%), par-
ticularly in the "Disgust" phase (p = 0.003, r = −0.215).

Fig. 1. Left: ROC curves. Right: Distribution of AQ scores and misclassification rates.

3.3 Misclassification Analysis

We analyzed misclassifications for potential biases. Chi-square tests revealed
no significant differences in classification errors based on gender or recording
environment (p ≥ 0.05). There was no evidence of an influence of gender or
recording setting (lab vs. home) on model performance, suggesting a degree of
generalizability and potential real-world applicability.

Given the overlap between ASC and non-autistic individuals in middle AQ
score ranges, we expected more frequent misclassification for participants with
intermediate scores. However, a Mann–Whitney U test comparing the AQ score
distributions of correctly and incorrectly classified participants revealed no signif-
icant difference (p ≥ 0.05). Figure 1 (right) shows the distribution of late-fusion
model misclassifications across AQ scores.



8 W. Saakyan et al.

Fig. 2. Left: SHAP values for the multimodal early fusion model. Each dot represents
a feature’s impact on an individual prediction. Right: Eye gaze angle projections on
the screen surface for ASC and non-autistic participants during the passive parts. The
red rectangle represents the screen area, where the actress was displayed. Vertical and
horizontal axes represent fields of view.

3.4 Contribution of each modality

We evaluated each modality’s contribution by measuring performance drops af-
ter removal. Excluding eye gaze or facial expressions led to the largest accuracy
reduction (-4 percentage points), highlighting their importance in the model’s
predictions. This aligns with prior research emphasizing atypical gaze behavior
[18,4,20] and reduced facial expressivity [8] as core characteristics of ASC. De-
spite its low standalone accuracy, removing HR variability still decreased perfor-
mance by -2 percentage points, supporting evidence that autonomic regulation
differs in ASC individuals [7]. A similar drop for audio features reinforces the rel-
evance of prosodic differences for ASC detection [7]. In contrast, removing head
pose data had no effect, suggesting minimal contribution. Future work should
further explore modality interactions and more sophisticated fusion strategies to
enhance the interpretability and robustness of multimodal assessments.

3.5 Conclusion

This study contributes to computer-aided ASC assessment by introducing re-
fined gaze descriptors as our primary technical contribution, alongside comple-
mentary facial expression, head movement, voice prosody, and HRV features
within a multimodal fusion framework. We also provide an in-depth analysis of
multimodal behavioral markers in standardized interactions within a large-scale,
adult-focused dataset. Our results highlight the value of precise gaze features in
enhancing ASC classification accuracy.
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While our study analyzed aggregated behavioral summaries across inter-
action phases, future work could use recurrent neural networks (LSTMs) or
transformer-based architectures to capture fine-grained time-dependent social
interaction dynamics in gaze shifts, facial expressivity, and vocal prosody. Im-
proving webcam-based HR extraction, including rPPG advancements, is another
promising avenue. Although our model distinguishes behavioral differences be-
tween individuals with and without ASC, clinical use involves differentiating
ASC from other conditions with overlapping social impairments, such as social
anxiety or personality disorders. Given the prevalence of comorbidities in mental
health patients, as seen in our dataset, future research should explicitly extend
into transdiagnostic settings. This will involve examining how multimodal inter-
action markers vary across overlapping conditions, thereby enhancing diagnostic
specificity and applicability. Nevertheless, our findings demonstrate the potential
of multimodal behavioral analysis for ASC detection.
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