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Abstract. Deep learning holds significant promise for enhancing real-
time ultrasound-based prostate biopsy guidance through precise and ef-
fective tissue characterization. Despite recent advancements, prostate
cancer (PCa) detection using ultrasound imaging still faces two criti-
cal challenges: (i) limited sensitivity to subtle tissue variations essential
for detecting clinically significant disease, and (ii) weak and noisy la-
beling resulting from reliance on coarse annotations in histopathological
reports. To address these issues, we introduce ProTeUS, an innovative
spatio-temporal framework that integrates clinical metadata with com-
prehensive spatial and temporal ultrasound features extracted by a foun-
dation model. Our method includes a novel hybrid, cancer involvement-
aware loss function designed to enhance resilience against label noise and
effectively learn distinct PCa signatures. Furthermore, we employ a pro-
gressive training strategy that initially prioritizes high-involvement cases
and gradually incorporates lower-involvement samples. These advance-
ments significantly improve the model’s robustness to noise and mitigate
the limitations posed by weak labels, achieving state-of-the-art PCa de-
tection performance with an AUROC of 86.9%. Our code is publicly
accessible at github.com/DeepRCL/ProTeUS.
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1 Introduction

Prostate cancer (PCa) is the second most commonly diagnosed malignancy
among men and the fifth leading cause of cancer-related death [15]. Early and ac-
curate detection significantly enhances patient outcomes, yet standard diagnostic
techniques, such as systematic transrectal ultrasound (TRUS)-guided biopsies,
suffer from limited sensitivity (40-50%), often failing to detect clinically signif-
icant cancers or prompting unnecessary biopsies due to their coarse sampling
and the inherent limitations of TRUS imaging [1,13,14]. While multi-parametric
MRI (mpMRI) fused with TRUS improves detection accuracy [19], it introduces
additional complexity and costs, and requires specialized expertise [2], which
restricts widespread clinical adoption. Therefore, developing reliable standalone
ultrasound-based methods remains clinically attractive for real-time, accurate
tissue characterization.

Recent advancements in deep learning (DL) have shown promising results in
improving PCa detection via various ultrasound imaging modalities [7,17,22,25],
including B-mode imaging [8,17,23], radio frequency (RF) data [22], contrast-
enhanced ultrasound (CEUS) [21], high frequency ultrasound [24], and shear
wave elastography [18]. Temporal enhanced Ultrasound (TeUS), which analyzes
time-series RF signals, has emerged as particularly promising due to its capacity
to capture subtle tissue dynamics often missed in static imaging methods [3,9].
In parallel to these developments, large-scale foundation models pre-trained on
diverse datasets are gaining traction for their robust performance in medical
imaging applications, including PCa detection [7,25].

Despite these advances, existing approaches remain limited by inadequate
robustness against subtle tissue variations and weak, noisy labels provided by
histopathology reports, which commonly lack precise spatial annotations. Such
weak labeling introduces noise in the training set of DL, models, potentially un-
dermining model performance [9]. In particular, cores with low cancer involve-
ment pose a greater risk of mislabeled regions, as only a small fraction of the
tissue is actually malignant. Training on these uncertain samples can destabilize
the learning process, especially in the early stages, causing the model to overfit
to noisy signals [10,20].

To address these significant gaps, we introduce ProTeUS, a novel learning
framework to integrate spatial image features and fine-grained temporal ultra-
sound signatures through a foundation model, that also encodes clinical meta-
data to enhance PCa detection. Our key contributions include:

— A spatio-temporal learning strategy integrating both global spatial and fine-

grained temporal features to enhance diagnostic robustness.

Incorporation of clinical metadata to contextualize image features and reduce

the impact of noisy labeling.

— An innovative hybrid loss function explicitly designed to enhance model re-
silience to noisy, weak labels.

— A progressive training methodology prioritizing clearly defined cases, incre-
mentally adapting to challenging, ambiguous samples.
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Fig.1: Overview of the proposed pipeline, integrating time-series RF signals,
patient metadata, cancer information in other cores (during training only), and
B-mode features for robust prostate cancer detection.
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These advances lead to significant improvements in prostate cancer detection
performance, offering a robust foundation for more precise biopsy guidance and
improved patient outcomes.

2 Materials and Methods

2.1 Dataset

Acquisition: A private dataset was collected as part of a clinical PCa study
approved by the institutional health research ethics board. All participants pro-
vided both verbal and written informed consent. The dataset comprises 883
biopsy cores obtained from 131 patients. Raw RF ultrasound data were cap-
tured using a BK3500 ultrasound system equipped with an E10C4 endocavity
transducer. Each biopsy core, approximately 18 mm in length, is associated with
200 consecutive TRUS RF frames recorded over 5 seconds while the transducer
was held stationary prior to tissue sampling. Histopathological analysis served
as the ground truth for each biopsy core, identifying cancer presence and quan-
tifying its involvement as a percentage.

Preprocessing: To generate image inputs, the RF data were converted into
B-mode images. For training, a random frame was selected from each sequence,
while for validation and testing, the last frame was used for consistency. In the
case of time-series data, temporal signals were extracted from consecutive frames
within the biopsy needle region.

2.2 Methods

Figure 1 illustrates our proposed framework. A temporal signal is extracted from
all pixels within the biopsy region (a single-pixel signal is shown for illustration)



4 T. Elghareb et al.

Consistent Cancer Case @
Ambiguous Cancer Case

Predicted Cancer Outlier Cancer Case ®
Involvement (%)
.
b Ceten “ele .
.oy e, - * e,
. °e o - .. '/ -
LY o N LL B M,
. ) e 2 °,* .
s R ., P ] - *®s o, o .
A R - ® . . . e, .
. A e e e ® 04+ oo
. . .
' ' L
. . g o 7*
L L .
I - -
-7 e - * 40"
g0 True Cancer 60 20 o
Stage 1 Involvement (%) Stage 2 Stage 3 Stage 4

Fig.2: Progressive training in four stages, gradually adding low-involvement
cases. High-loss samples are flagged as ambiguous, re-evaluated in the next stage,
and removed if losses persist.

and fed into a time-series encoder. The resulting embeddings are aggregated
via adaptive pooling and passed to a prompt encoder. Patient metadata and
other-core information (used during the training phase only) share the same text
encoder but use separate projection layers. These prompts and image features
extracted by the image encoder guide the image decoder in generating a cancer
segmentation mask for the entire prostate. During training, the biopsy region is
isolated, and an involvement-aware loss function is applied.

Segmentation Backbone. We use the pre-trained MedSAM foundation
model [12]. The Vision Transformer (ViT) image encoder, with approximately
90M parameters, is used to extract visual features from a 1024 x1024 ultrasound
B-mode image. The ViT has a patch size of 16, resulting in a 64 x64 feature grid,
each embedding having 256 dimensions. These embeddings are then passed to
a 6M-parameter mask decoder, which produces a 256x256 segmentation map
guided by 256-dimensional sparse prompt embeddings. Both the ViT encoder
and mask decoder are trained end-to-end on our task.

Time-Series Encoder. To incorporate the RF ultrasound signals, we em-
ploy an InceptionTime encoder [4] (6M parameters) with a depth of 9. It pro-
cesses sequences of length 200, with 600 input channels and 256 output channels.
We set the bottleneck channels and kernel sizes to 12 and 15, respectively. This
fully trained encoder captures vital temporal features for accurate characteriza-
tion of cancer.

Text Encoder. We also integrate non-imaging information through a text
encoder based on PubMedBERT (110M parameters) [6]. The weights of Pub-
MedBERT are kept frozen, yielding 768-dimensional embeddings for each textual
input. These embeddings are then down-sampled to 256 dimensions via two lin-
ear projection layers (with GELU activation), ensuring compatibility with the
prompt encoder. Separate projection heads handle patient metadata and addi-
tional core descriptions independently.

Prompt Encoder and Fusion Strategy. Each modality is encoded via a
modality-specific projection layer into a 256-dimensional vector. These modality-
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specific embeddings are concatenated and then passed through a shared linear
layer to form a unified prompt representation, which guides the mask decoder.

Loss Function. We formulate PCa detection as a weakly supervised task by
leveraging coarse involvement data. Let R be the set of ROI pixels, defined by
intersecting the needle region N with the prostate mask P:

R ={(i,4) 4,5 € [1,1024], N[i, j] # O A Pli, j] # 0}. (1)

We propose an involvement-aware hybrid loss, which combines two specialized
domain-specific loss functions explored in our prior work [7], IMSE (involvement-
aware mean squared error) and iMAE (involvement-aware mean absoluter error).
Given the ground-truth involvement score inv € [0, 1], representing the fraction
of cancerous tissue within a core, our loss function is defined as:

‘—fq S (Vi) — inv)?, 2)

EiMSE (Y, inv) =

(i,j)ER
. 1 Al
Livag(Y,inv) = @ Z Y, j] — 1nv|, (3)
(i,7)ER
N 1
Litiybria (Y, inv) = 5 (ﬁiMSE + ﬁiMAE)- (4)

This design combines the strong penalty for large errors (iMSE) with a linear
penalty for consistent reductions (iMAE), stabilizing training under label noise
and promoting more accurate modeling of spatial cancer spread.

Progressive Training Strategy. Our training scheme, depicted in Figure 2,
progressively introduces more challenging cancer-core examples while filtering
outliers across four stages (each stage spans five epochs). In Stage 1, all benign
cores and only cancer cores with greater than 80% involvement are used. After
the first stage, we identify ambiguous cases using a 0.95 error quantile criterion;
these suspicious outliers are flagged for re-evaluation. Stage 2 lowers the cancer
involvement threshold to 60%, again flagging ambiguous cores at the end of
the stage. Outliers marked in previous stages are either permanently removed if
their errors remain high, or reinstated if improved. Stages 3 and 4 repeat this
procedure with thresholds of 40% and 20%, respectively, allowing the model
to adapt incrementally to increasingly subtle cancer involvement levels while
discarding persistent outliers.

2.3 Experiments

Benchmarking. We conduct a series of experiments on a wide range of baseline
methods from the PCa detection literature, including UNet [16], SAM [11], and
MedSAM [12] (without prompt embeddings), all using B-mode images exclu-
sively. We also explore InceptionTime [1] and TimesNet [26], time-series models
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Table 1: Performance comparison with prior methods for PCa detection. AU-
ROC, Seunsitivity at 60% specificity (SEN@QG0SPE), and Balanced Accuracy (%)
are reported as mean =+ standard deviation across 5-fold cross-validation.

Method AUROC SEN@60SPE BACC

TimesNet [20] 69.3£3.2 71.2+£3.0 654+£32
InceptionT [4] 73.1+25 752+28 684+3.0
UNet [16] 75230 783+£36 70.2+3.2
SAM |[11] 779429  782+4.2 T70.0+3.8
MedSAM [12] 81.0+26 81.24+3.8 T73.0£3.5
ProstNFound [25] 83.4+2.1 86.2+34 75.7+2.0
Cinepro [7] 85.8+19 88.0+32 T7.0£1.7
ProTeUS 869+11 901+£33 779+£15

trained solely on time-series RF data. Finally, we train two SOTA foundation
model methods for PCa detection, ProstNFound [25] and Cinepro [7], currently
regarded as the SOTA in PCa detection.

Training and Evaluation. We perform an 80/20 data split, allocating 80%
of patients for training and validation through a 5-fold cross-validation scheme,
and reserving 20% as an independent test set. The splits ensure no patient-level
overlap, maintaining evaluation integrity.. We use AdamW as the optimizer,
applying a learning rate of 1 x 107° for the image encoder, mask decoder, and
prompt encoder, and 1 x 10~* for the time-series encoder and projection layers.
A cosine-annealing schedule governs the learning rate throughout training. All
experiments are conducted on a single NVIDIA RTX 6000 GPU with a batch
size of 1, and each training epoch completes in approximately 30 minutes.

3 Results and Discussion

Quantitative Results. Table 1 presents our findings in comparison to other
competing methods. We evaluate performance using AUROC, sensitivity, and
specificity. AUROC is computed by comparing the predicted continuous involve-
ment scores against ground truth annotations. Sensitivity and specificity are de-
rived from the ROC curve, with sensitivity reported at 60% specificity—i.e., the
true positive rate at the point where specificity equals 60%. Our results demon-
strate that whole-image methods outperform time-series models, with standard
architectures like UNet exceeding InceptionTime by 2.1%. The gap widens with
foundation models, where SAM and MedSAM surpass InceptionTime by 4.8%
and 7.9%, respectively. Encoding additional information further enhances per-
formance: ProstNFound outperforms MedSAM by 2.4%, while Cinepro surpasses
MedSAM by 4.8% and ProstNFound by 2.4% due to its robust loss function and
temporal cine-series augmentation.

By integrating time-series RF signals with a foundation model encoder, Pro-
TeUS achieves state-of-the-art performance, outperforming Cinepro by 1.1% and
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Fig. 3: (a) The effect of cumulative performance improvement to MedSAM after
adding different components. (b) The effect of increasing the depth of Inception-
Time network. (c) Performance with different loss functions. (d) The effect of
increasing the time-series sequence length.

ProstNFound by 3.5%. It also surpasses the current SOTA by 0.9% in balanced
accuracy and 2% in sensitivity (at 60% specificity). Statistical significance over
CinePro is confirmed (p=0.003), and clinically, ProTeUS identified three addi-
tional cancerous cores, including two high-risk Gleason score 9 cores with small
(<10%) involvement, demonstrating the power of spatio-temporal learning for
PCa detection.

Ablation Studies. We conducted a series of ablation experiments to assess
the impact of each component in our framework. Figure 3(a) illustrates the in-
cremental contributions of (i) temporal RF embeddings from InceptionNet, (ii)
additional core-level cancer information (during training only), (iii) patient meta-
data (PSA and PSA density), and (iv) progressive training strategy. The largest
performance gain arises from the time-series data, indicating that temporal cues
play a crucial role. Cancer information from other cores provides broader con-
text, enabling more discriminative visual features, and patient metadata refines
these representations further. Gradually introducing lower-involvement cores via
progressive training then stabilizes learning and boosts overall performance.
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Figure 3(b) shows that while moderate network depth enhances performance,
going too deep eventually leads to overfitting and a decline in AUROC. In Fig-
ure 3(d), varying the time-series sequence length shows that longer sequences
capture richer temporal information, yielding higher performance.

We also compared multiple loss functions, including dice, cross-entropy, T-
Loss [5], and our involvement-aware hybrid loss, Litybria- As illustrated in Fig-
ure 3(c), Linybrid outperforms single-term alternatives by combining strong penal-
ties for large errors (iIMSE) with consistent error reduction (iMAE), leading to
balanced gradients and improved robustness against coarse labels.

Cancer, 90% Inv. Cancer, 50% Inv. Cancer, 25% Inv. Benign

ProTeUs

Probability of Cancer

MedSAM

°

Fig. 4: Qualitative comparison of predicted cancer heatmaps from ProTeUS and
the fine-tuned MedSAM baseline, against the histopathology labels. Red regions
signify higher cancer likelihood. The biopsy samples are overlaid on each im-
age with white rectangles. The labels are derived from the biopsy samples. An
alternative version of this figure with an accessibility-friendly color palette is
available in our GitHub repository.

Qualitative Results. Figure 4 compares the cancer heatmaps predicted by
ProTeUS and the fine-tuned MedSAM baseline. ProTeUS demonstrates a more
accurate cancer distribution confined to the biopsy (needle) region, consistent
with pathology findings. In benign samples, ProTeUS exhibits markedly lower
activation levels, indicating enhanced tissue characterization and fewer false-
positive regions compared to the baseline.

4 Conclusion

In this work, we presented a comprehensive framework for PCa detection that
combines the strengths of foundation models, RF time-series data, patient meta-
data, and additional core-level cancer information. By unifying these distinct
data modalities, our approach offers a richer representation of prostate tissue,



ProTeUS 9

enabling more accurate lesion characterization. Furthermore, our involvement-
aware loss function and progressive training strategy alleviate challenges posed
by coarse labels, ensuring robust performance under real-world conditions. Col-
lectively, these contributions pave the way for more targeted biopsy procedures,
thereby reducing unnecessary interventions and optimizing clinical outcomes in
PCa diagnosis.
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