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Abstract. Radiology reports contain free-form text that conveys criti-
cal clinical information derived from imaging studies and patient history.
However, the unstructured nature of these reports, coupled with the com-
plexity and ambiguity of natural language, poses significant challenges
for automated information extraction, particularly in domains with lim-
ited labeled data. To address this, we introduce a novel expert-annotated
dataset encompassing four new imaging modalities: cardiac magnetic res-
onance imaging (MRI), abdominal ultrasound, head computerized to-
mography (CT), and CT pulmonary angiography (CTPA). Leveraging
this dataset, we developed transformer-based models optimized for entity
recognition and relation extraction within specific modalities, enabling
the generation of high-quality radiology annotations. Our evaluation of
fine-tuning methods demonstrate that modality-specific models achieve
a 12.5% macro F1 score improvement in entity recognition and a 28.3%
improvement on relation extraction tasks compared to prior approaches.
These findings highlight the potential of fine-tuned, modality-specific
models in enhancing automated radiology text processing and down-
stream applications. By releasing the model and datasets, we aim to
foster research on wider modalities in medical natural language process-
ing across a broader range of imaging modalities. The code is available
at https://github.com/tonikroos7/RadGraph-Multimodality.

Keywords: Radiology Report - Deep Learning - Natrual Language Pro-
cessing.
1 Introduction

Radiology reports are essential for assessing a patient’s clinical condition based
on imaging studies. They serve a key role in medical natural language process-
ing (NLP) applications, including information extraction, sentiment analysis,
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and predictive modeling [2]. However, nearly 80% of electronic health records
(EHRSs) consist of unstructured, free-form texts, making automated process-
ing for secondary applications challenging and complicating the extraction of
valuable clinical insights [17]. Supervised deep learning approaches, which dom-
inate current NLP methods, require large amounts of high-quality labeled data.
This need is particularly evident in radiology, where imaging modalities such
as head CT and cardiac MRI rely on precise, high-fidelity annotations. How-
ever, high-quality datasets remain scarce, and even when available, annotation
inconsistencies across datasets can introduce discrepancies that hinder model
performance [20]. To address these challenges, developing a high-quality radi-
ology report dataset with a standardized annotation framework is crucial for
improving the accessibility and usability of medical data. Existing datasets like
MIMIC-CXR [15] and CheXpert [12] link radiographic studies to free-text radiol-
ogy reports but often fail to capture fine-grained clinical details. More advanced
approaches integrate entity extraction [4] and prioritize factual accuracy [6],
though they remain heavily dependent on expert annotations.

In medical information extraction, traditional machine learning methods,
such as sequential classifiers, have been widely used to extract medical con-
cepts [19]. More recent approaches leverage deep learning architectures, including
long short-term memory (LSTM) networks, recurrent neural networks (RNNs),
and bi-directional LSTMs [5, 9, 10, 13]. Transformer-based architectures [21] have
further advanced the field, enabling large language models (LLMs) to achieve
state-of-the-art performance across a range of medical NLP tasks. Within LLMs,
named entity recognition (NER) serves as a fundamental component for appli-
cations such as knowledge graph construction, sentiment analysis, and question
answering [18, 25].

RadGraph utilizes language models to identify clinical entities and inter-
entity relationships in chest X-ray reports [14]. While RadGraph has been in-
strumental in downstream tasks, such as automatic radiology report generation
[7], knowledge graph integration [24], style-aware radiology report generation
[23], and long-time disease progression tracking [16], its applicability remains
limited to the X-ray modality. To expand its utility, RadGraph-XL [8] extends
the framework to a broader range of imaging modalities. However, the availability
of high-quality, annotated radiology reports across multiple modalities remains
insufficient, limiting the effectiveness of current models. To address this gap, we
extend the RadGraph dataset to support a more diverse set of radiology modal-
ities. Our contributions can be summarized as follows: 1) We introduce a new
dataset covering four commonly used but previously underrepresented imaging
modalities, annotated by expert radiologists. 2) We develop a fine-tuning ap-
proach leveraging a BERT-based language model, achieving high accuracy in
both NER and relation extraction tasks. 3) We demonstrate the effectiveness
of modality-specific RadGraph extension, highlighting its potential for broader
applications in clinical practice and research.



Enhancing Radiology Report Interpretation through Fine-Tuning 3

Modality-specific dataset

( * 2
N
<
Cardiac MRI Cardiac MRI

RadGraph
RadGraph dataset Pretrained
. - RadGraph @
) Hea}ﬁ N Fine-tuning
CTPA
" Annotations can
-

be used on other
downstream
- Abdominal -/ _J tasks
Uttrasound Abdominal Ultrasound
RadGraph

Fig. 1. Overview of the fine-tuning pipeline. The model is initially trained on the
RadGraph dataset [14] and then fine-tuned on different modalities. The resulting high-
quality, modality-specific model can then be applied to information extraction and
other downstream tasks.

2 Proposed Framework

We adopt the annotation scheme introduced in RadGraph [14] to label entities
and relations in radiology reports. To extend the model’s multi-modality ca-
pabilities, we developed a new expert-annotated dataset in collaboration with
radiologists. To ensure high-quality standards while expanding upon prior work,
annotators were trained using the same guidelines as RadGraph and evaluated
on a subset of its dataset. This approach maintains compatibility between our
dataset and RadGraph, enabling robust multi-modality information extraction
and evaluation.

New Modality We extend RadGraph by incorporating additional modalities,
expanding its applicability beyond chest X-rays. The newly included modali-
ties are cardiac MRI for detailed tissue characterization and cardiac function
assessment, CT pulmonary angiography for pulmonary vasculature evaluation,
including pulmonary embolism detection, head CT for rapid assessment of acute
conditions such as stroke, hemorrhage, and trauma, and abdominal ultrasound
for non-invasive evaluation of abdominal organs, including hepatobiliary pathol-
ogy. These imaging modalities serve as critical first-line diagnostic and screening
tools for cardiovascular, digestive, and neurological disorders, conditions with
high morbidity and mortality rates that often necessitate urgent intervention.
By incorporating these underrepresented modalities, our dataset introduces clin-
ically significant scenarios ranging from routine imaging to emergency conditions
that are currently lacking in existing medical NLP research.
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New Anatomical and Pathological Annotations Our dataset introduces
annotations for previously unrepresented anatomical regions and diseases, en-
hancing its clinical relevance for downstream applications. These additions in-
clude cardiac abnormalities including pulmonary vein anomalities, atrial dila-
tion, and tricuspid regurgitation, abdominal conditions such as cholelithiasis
and acute cholecystitis, pulmonary vasculature pathologies including pulmonary
embolism, and head and brain pathologies such as acute hemorrhage, ischemic
stroke, and brain masses. By incorporating a diverse range of anatomical struc-
tures and pathological findings, our dataset enables more comprehensive infor-
mation extraction, fostering advancements in multi-modality medical NLP and
decision support systems.

2.1 Annotation Scheme

Entity Entities are defined as spans of text or individual words within the ra-
diology reports. These entities are categorized into two main types: Anatomy
and Observation. Anatomy is the text that is related to anatomical body parts
that exist in the radiology report. Observation refers to words associate with
visual features, identifiable pathophysiological processes, or diagnostic disease
classifications. There are three categories for observation: Observation: Definitely
Present, Observation: Definitely Absent, and Observation: Uncertain, which de-
notes the level of certainty regarding the observation’s presence. In total, the
schema defines four entity categories.

Relation Relations are defined as directed edges between two entities, repre-
senting their interactions. The schema includes three types of relations: Located
At, Modify, and Suggestive Of. Located At links an anatomy entity to an obser-
vation, indicating either the location of the observation or a relationship between
the anatomy and the observation. Modify denotes the relationship between two
observations or two anatomy entities, where the first entity alters or impacts the
second. Suggestive Of connects two observations if the first observation infers
the presence of the second observation. Compared to previous annotation tech-
niques, this schema captures relationships more precisely while simplifying the
annotation process.

2.2 Dataset

To explore the multi-modality capabilities of the RadGraph model, we extend
its dataset by incorporating four additional imaging modalities while closely fol-
lowing the annotation procedures outlined in the original RadGraph study [14].
Each dataset was annotated by two radiologists or trainees who independently
labeled the reports before reviewing their annotations together to reach a con-
sensus. To ensure consistency, all annotators followed the same structured anno-
tation guidelines as in the original RadGraph dataset and were trained using the
previous RadGraph annotations. The annotation process was conducted using
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Datasaur [1], a widely used text annotation platform that allow radiologists to
annotate reports directly based on a predefined schema. A detailed breakdown
of our dataset is provided in Table 1. In total we collected 800 radiology reports,
comprising of 100 cardiac MRI reports, 200 CTPA reports, 300 head CT reports,
and 200 abdominal ultrasound reports. We aimed to maintain a balanced report
distribution across modalities, ensuring sufficient annotations for training and
fine-tuning. Our dataset contains 14,813 unique entity pairs (entity, label) and
11,179 unique relation tuples (entity 1, entity 2, relation). Overall, the dataset
size has increased by 60% compared to the RadGraph, which was limited to
chest X-ray reports and different from RadGraph-XL which contains chest CT,
abdomen/pelvis CT, brain MR, and chest X-rays [8]. The entity distribution
is relatively balanced, with anatomical annotations comprising approximately
40% of total annotations and observation annotations accounting for 60%. The
relation distribution follows a similar trend observed in previous work [14, 8],
reflecting the inherent structure of radiology reports.

Table 1. Category distribution statistics of our dataset.

MRI (%) CTPA (%) HeadCT (%) Ultrasound(%)

Anatomy 979 (42.1) 2671 (45.3) 1765 (40.5) 734 (32.9)
Observation: Definitely Present 1175 (50.5) 2546 (43.2) 1550 (35.5) 916 (41.0)
Observation: Uncertain 57 (2.5) 247 (4.2) 74 (1.7) 152 (6.8)
Observation: Definitely Absent 115 (4.9) 429 (7.3) 973 (22.3) 430 (32.9)
Total Entities 2,326 (100) 5893 (100) 4362 (100) 2232 (100)
Modify 1232 (69.4) 3256 (72.0) 2404 (T1.9) 986 (64.1)
Located at 454 (25.6) 962 (21.3) 829 (24.8) 389 (25.3)
Suggestive of 90 (5.1) 302 (6.7) 112 (3.3) 163 (10.6)
Total Relations 1,776 (100) 4,520 (100) 3,345 (100) 1,538 (100)

3 Experiments and Results

3.1 Approaches

We developed a modality-specific model using our newly annotated dataset in
conjunction with the RadGraph dataset [14]. The model leverages RadGraph
annotation to achieve performance comparable to previous methods while fine-
tuning pre-trained models for adaptation across multiple imaging modalities. For
each modality in our dataset, we fine-tuned a modality-specific version of Rad-
Graph for performance evaluation. To ensure compatibility with transformer-
based language models, we preprocessed radiology reports by tokenizing text,
separating punctuation from words, and structuring them into sequences suit-
able for training and inference. As a baseline, we employed a BERT-base-uncased
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model, providing a reference point for evaluating improvements gained from tran-
sitioning from a general-purpose model to a domain-specific one. To comprehen-
sively evaluate performance, we integrated several biomedical language mod-
els pretrained on domain-specific corpora. These models were incorporated into
the DYGIE++ [22] framework, which has demonstrated state-of-the-art results
in NER and relation extraction tasks, as evidenced by the RadGraph [14] and
RadGraph-XL [8] models. For the biomedVLP-CXR-BERT [3]| and BiomedNLP-
BiomedBERT [11] models, we used the following hyperparameters: a learning
rate of 2e-3, a batch size of 1, the AdamW optimizer with an embedder learning
rate of le-5, and weight decay of 0.01. A 7:1.5:1.5 split was used for training,
validation, and testing. Training was performed on an NVIDIA GeForce RTX
3080 GPU for up to 50 epochs with early stopping to prevent overfitting.

3.2 Pre-trained model selection

We first evaluate the performance of various base models to determine the most
suitable pre-trained model for our task. For entity recognition, a prediction is
considered correct if the predicted span and entity type exactly match the ground
truth. For relation extraction, correctness requires that the span boundaries,
entity types, and relation type between entities are all accurately identified. We
select the model with the highest overall performance as the base model. Our
results indicate that all Biomed-BERT models achieved higher macro F1 scores
than the baseline BERT model. This finding reinforces the notion that general-
purpose models, which are not fine-tuned on biomedical-specific corpora, struggle
to capture the domain-specific nuances of radiology reports, leading to lower
performance in clinical NLP tasks. We observe that BiomedNLP-Biomed BERT
achieves the highest macro F1 scores on the test set. Based on these results, we
select BiomedNLP-BiomedBERT as our base model for further fine-tuning. The
performance results for all approaches are summarized in Table 2.

Table 2. Aggregated results of the selected base model on RadGraph dataset

Approach Entity Relations
Precision Recall Macro F1|Precision Recall Macro F1
Baseline BERT 0.867 0.919 0.916 0.786 0.758 0.772
BiomedVLP-CXR-BERT 0.916  0.924 0.920 0.805 0.772 0.788
BlueBERT 0.898 0.910 0.903 0.793 0.748 0.769

BiomedNLP-BiomedBERT* 0.913 0.937 0.924 0.827 0.825 0.826

3.3 Performance analysis

We fine-tuned four different RadGraph-specific models, each tailored to a sin-
gle imaging modality. As shown in Table 3, our RadGraph-specific model out-
performs both RadGraph and RadGraph-XL across nearly all entity and rela-
tion categories for all modalities. For entity recognition, our fine-tuned model
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Table 3. Comparative analysis between our fine-tuning method with previous works.
"O-DP" stands for "Observation: Definitely Present", "O-DA" stands for "Observa-
tion: Definitely Absent", and "O-U" stands for "Observation: Uncertain". The best
performance score is shown in bold.

Models ANAT O-DP O-DA O-U Modify Located At SuggestiveOf
Cardiac MRI

RadGraph 0.827 0.701 0.659 0.207 0.503 0.472 0.261
RadGraph-XL 0.826 0.732 0.720 0.343 0.643 0.550 0.440
RadGraph-fine-tuning 0.955 0.871 0.757 0.424 0.847 0.775 0.444
CTPA

RadGraph 0.900 0.785 0.795 0.595 0.580 0.464 0.590
RadGraph-XL 0.923 0.753 0.862 0.549 0.626 0.466 0.526
RadGraph+fine-tuning 0.925 0.822 0.860 0.656 0.664 0.468 0.608
Head CT

RadGraph 0.886 0.671 0.772 0.444 0.555 0.415 0.370
RadGraph-XL 0.900 0.653 0.793 0.400 0.675 0.488 0.514
RadGraph+fine-tuning 0.912 0.833 0.896 0.667 0.797 0.602 0.400
Ultrasound

RadGraph 0.872 0.810 0.876 0.595 0.616 0.555 0.426
RadGraph-XL 0.889 0.815 0.891 0.546 0.685 0.629 0.377
RadGraph-+fine-tuning 0.876 0.843 0.897 0.615 0.730 0.655 0.576

achieves an macro F1 score of 0.801, which is 14.3% higher than RadGraph-XL
(0.712) and 10.5% higher than RadGraph (0.725). In the major entity category
Anatomy: Definitely Present, our model achieves an F1 score of 0.92, which
is 5.6% higher than RadGraph and 4% higher than RadGraph-XL. For relation
extraction, our model demonstrates even more significant improvements, achiev-
ing an F1 score of 0.621, which is 14.8% higher than RadGraph-XL (0.541) and
28.3% higher than RadGraph (0.484). The performance of Suggestive Of cate-
gory in head CT is affected by the scarcity of corresponding labels, which account
for only 3.3% of the dataset. Due to this imbalance, minor variations in predic-
tions can lead to substantial fluctuations in F1 scores. Notably, RadGraph-XL
achieved only three additional true positives compared to our model, suggesting
a minimal practical difference.

We hypothesize that the performance of Observation: Definitely Absent and
Anatomy in the CTPA and ultrasound datasets may be influenced by annotation
inconsistencies among different annotators. Despite these minor misalignments,
our fine-tuned model remains competitive, with only 0.002 and 0.013 differences
in F1 scores, respectively, when compared to RadGraph-XL. Overall, our find-
ings confirm that modality-specific pre-training enhances model performance.
Fine-tuning models on domain-specific datasets improves their ability to iden-
tify clinical entities and relationships, as they become better adapted to the spe-
cialized language and context of radiology reports. These results highlight the
robustness of our model and establish it as a strong candidate for downstream
tasks in multi-modality radiology NLP.
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We evaluated the multi-modality capabilities of our model by training it on
the full dataset, which includes cardiac MRI, CTPA, ultrasound, and head CT
reports. As shown in Table 4, our multi-modality model achieved and F1 score of
0.854 for entity recognition, representing a 14.6% improvement over RadGraph-
XL and 7.4% over RadGraph. Additionally, for relation extraction, our model
outperformed RadGraph by 31.9% and RadGraph-XL by 28.3%. To further ex-
amine the impact of training data proportions on modality-specific model per-
formance, we selected the Head CT dataset as a case study. As shown in Ta-
ble 5, increasing the proportion of Head CT data in the training set generally
led to performance improvements, with 70% training data yielding the highest
F1 scores for both tasks. Interestingly, at 30% training data, entity recognition
performance reached a sub-optimum result. This suggests that, under a fine-
tuning framework, the model can achieve strong performance even with limited
modality-specific data. As the dataset size increases, incorporating a higher pro-
portions of reliable modality-specific data further enhances model performance
for specialized tasks.

Table 4. Comparison of previous models with our multi-modality model on our test
set, evaluated using Macro F1 scores for both tasks.

Approach Entity Relation
RadGraph 0.795  0.526
RadGraph-XL 0.745 0.541

Multi-Modality RadGraph 0.854 0.694

Table 5. Pre-trained model performance comparison based on different proportions of
training data for Head CT.

Dataset Portion (%) 10 20 30 40 50 60 70

Entity 0.777 0.762 0.830 0.827 0.819 0.792 0.849
Relation 0.628 0.675 0.684 0.690 0.691 0.659 0.733

4 Conclusion

We expanded the RadGraph framework by introducing a new multi-modality
dataset encompassing cardiac MRI, CTPA, head CT, and abdominal ultra-
sound reports, thereby broadening the model’s applicability across diverse imag-
ing modalities. Our experiments demonstrate that fine-tuning modality-specific
models is highly effective, enabling strong performance with less training data
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while providing insights into optimal training strategies. We further empha-
size the importance of modality-specific RadGraph models, showing that they
consistently outperform out-of-domain models in entity recognition and rela-
tion extraction tasks. These findings reinforce the necessity of tailored models
for specialized radiology datasets. Future work will focus on enhancing relation
extraction performance and evaluating modality-specific models on additional
domain-specific downstream tasks. By advancing the RadGraph framework, we
aim to facilitate its broader adoption in multi-modal clinical applications, ulti-
mately improving automated radiology information extraction and medical NLP
research.
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