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Abstract. In open spine surgery, navigation requires registration between the sur-
gical field and volumetric CT. The spine pose changes between preoperative CT 
(pCT) and intraoperative patient positioning, and can further change after in-
traoperative CT (iCT) during surgery, degrading navigation accuracy. In this 
study, we developed a novel, fully automated end-to-end system for spine pose 
adjustment driven by intraoperative stereovision imaging (iSV) images. Our sys-
tem includes three innovative modules. First, we present a method to automati-
cally generate weak bone labels in stereo images via co-registration with iCT 
images. The automated labeling process addresses the labor and expertise-inten-
sive challenges associated with supervised bone segmentation models that typi-
cally require manually segmented labels for training. Second, we train a fully 
convolutional deep learning method that integrates complementary information 
from the color (RBG) and depth (D) images to automatically segment bone using 
the weak labels. Finally, the segmented bone structures are used to perform a 
pose-adjusted registration. Data collected from 5 porcine cadavers were used for 
training and validation, and data from 2 porcine cadavers were used for inde-
pendent testing. Pose-adjusted registration accuracy across all lumbar levels of 
test specimens was 2.0±1.1 mm, compared to 2.5±1.5 mm using manual segmen-
tation, and 9.1±6.8 mm using a commercially available navigation system. The 
fully automated pose-adjusting registration framework compensated for spine 
motion between pCT and intraoperative positioning and overall achieved clini-
cally acceptable accuracy. Our approach was not user or expertise-dependent and 
holds potential for wider adoptions in open spinal procedures for intraoperative 
spine motion correction. Code is available at https://github.com/wRossw/Sparse-
XM-Spine-Pose-Adjustment. 

Keywords: Deep Learning Segmentation, Stereovision Images, Surgical Navi-
gation, Spine Motion Adjustment. 
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1 Introduction 

Surgical navigation has become the standard of care in open spinal procedures, provid-
ing surgeons with more perception, reducing procedural time, and increasing surgical 
accuracy [1, 2]. Navigation relies on registration between a volumetric image (e.g., CT) 
and the surgical field. Preoperative CT (pCT) images are typically acquired in a supine 
position that differs from the intraoperative surgical position (prone), and the pose 
changes significantly degrade registration accuracy using pCT. Tracked, mobile in-
traoperative CT (iCT) units (e.g., O-arm, Medtronic) provide automatic surgical field 
registration to enable navigation. However, iCT requires large capital expense [3, 4], 
increases radiation exposure for patients [5] and surgical team, and significantly inter-
rupts workflow by requiring intraoperative time [6] during which the surgical team is 
required to leave and re-enter sterile field in addition to the imaging time (~15 min). 
Further pose change may occur during the procedure and degrade registration accuracy. 

Compared to fluoroscopy [7] and ultrasound [8, 9] based frameworks that have been 
proposed to enable intraoperative registration, three-dimensional (3D) vision systems 
provide radiation-free registration and can account for intraoperative pose change with 
clinically acceptable accuracy and efficiency [10, 11]. The registration process can be 
repeated to allow for continual monitoring throughout surgery. We have implemented 
intraoperative stereovision imaging (iSV) systems to reconstruct the exposed spine sur-
face, and have developed an automated pose-adjusted registration framework (Figure 
1) to correct for spinal motion [12, 13]. In prior studies, accurate manual bone segmen-
tation from iSV was required from a user, limiting wider adoption of the approach. 
Deep learning methods can be leveraged to eliminate user intervention involved in reg-
istration driven by iSV. Toward this end, Liebmann et. al [14] and Massalimova et al. 
[15] segmented bone surface from iSV using color image information, but the study 
was limited to explanted spines and depth information was not utilized for surface seg-
mentation. Transition to in-situ and in-vivo segmentation can be challenging as deep 
learning methods typically require labor and expertise to generate labels for supervised 
training.  

 
Fig. 1. Pose-adjusted registration process. pCT was acquired in a supine position while intraoper-
ative positioning is prone. iSV images were acquired in the intraoperative prone position and 
used to drive a registration to compensate for pose changes between each vertebra in pCT (col-
ored) and their counterpart in iSV. 
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In this paper, we propose a Sparse-XM approach: Spine Pose Adjustment 
with RGB-D Bone Segmentation via Cross-Modality Label Transfer. The contribution 
of this approach is threefold. First, we developed a cross-modality label transfer scheme 
for automatically generating weakly-labeled datasets to overcome the challenges asso-
ciated with labor-intensive labeling process. Second, we adapted and trained the Stan-
ford Prostate Cancer Network (SPCNet) [16], a network based on a modified holisti-
cally-nested edge detection (HED) architecture [17], in order to segment bone from 
color (RGB) and depth (D) images. Third, we completed a fully automated spine pose 
adjustment framework to account for spine motion between pCT and intraoperative 
positioning using predictions from the adapted SPCNet. We evaluated the accuracy 
performance of the Sparse-XM approach in 2 testing specimens, and compared to ac-
curacies achieved with manual segmentation and automatically generated weak labels. 

2 Proposed Methods 

2.1 Dataset 

Data from seven (7) porcine cadavers were collected. For each specimen, a posterior 
midline incision was performed exposing the posterior surface of the lumbar spine (L1-
L6). A total of 18 mini screws (1.5-mm diameter; Stryker) were implanted as fiducial 
markers in the spine with three at each vertebral level (one at the spinous and one at 
each transverse process). The specimen was then placed in a supine position and a pCT 
acquired representing preoperative imaging. A navigation system (StealthStation, Med-
tronic) was used for optical tracking. The animal was then positioned prone and a ref-
erence frame (Spinous Reference Frame, Medtronic) was rigidly attached to the sa-
crum. An additional iCT was acquired as ground truth. A series of iSV images of the 
exposed spine surface were acquired in the same surgical prone position using a custom 
designed imaging system described in [12]. The iSV system was tracked via a rigidly 
attached tracker (sureTrak active, Medtronic) and calibrated, and the locations of re-
constructed surfaces were computed relative to the reference tracker. A point-based 
rigid registration was performed between the surgical field and iCT with the navigation 
system using 10 out of the 18 fiducials (maximum number allowed in the system) to 
achieve co-registration between iSV and iCT. A second point-based rigid registration 
per individual image (8±2 fiducials/image) was performed. A total of 352 tracked iSV 
images were acquired across 7 specimens (50±16 images per specimen) and the mean 
fiducial registration error was 0.6±0.2mm across images used for model training. 

2.2 Cross Modality Label Transfer for Generation of Weak Labels 

The spine was segmented from iCT via thresholding, and a 3D point cloud of the spine 
surface was generated. A 3D point cloud of the exposed spine was reconstructed from 
each iSV image. The iCT and iSV point clouds were co-registered in the same coordi-
nate system through tracking and iCT registration. Points from iSV within a distance 
threshold of 3 mm to iCT were classified as bone surface points (Figure 2A) [18]. 
Briefly, a closest point distance algorithm was used to calculate the distance between 
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iCT and iSV point clouds, and the distance threshold was applied to select valid bone 
points from iSV. Since each point in iSV point clouds corresponded to a pixel in the 
iSV image, the bone surface classification results were transformed into the original 
pixel space of the rectified stereo image to create labels of the bone surface for all 352 
RGB-D images. The resulting labels were weak labels of the bone as the automatic 
transfer contained various errors and noises from components in the system, such as 
errors from tracking, 3D reconstruction, calibration, and iCT registration [12]. 

 
Fig. 2. The Sparse-XM approach. A) Cross Modality Label Transfer relies on coregistration of 
iSV and iCT surfaces to transfer bone labels to RGB-D images. B) Cross Modality weak labels 
are leveraged for training bone segmentation network. C) predictions from the network are passed 
as input to the pose-adjustment registration framework. 

2.3 Learning Bone Segmentation from RGB & D Images 

A modified SPCNet network architecture (Figure 2B) was adapted for bone segmenta-
tion. The adapted-SPCNet architecture leveraged deep supervision that was applied to 
multiple side outputs as well as the final downstream output of the architecture to learn 
both multi-level and multi-scale features [17]. These design components were benefi-
cial for aiding the extraction of edges in the bone segmentation task and the reason for 
SPCNet selection. The original architecture was modified to handle multimodal inputs: 
two parallel input branches taking the RGB and D images respectively from a single 
iSV input pair. Each input was passed into a series of convolutional layers and were 
fused into a single fusion branch where additional convolutions were applied. Upsam-
pled side outputs were extracted along each branch and concatenated with the final 
fusion output for binary segmentation. The RGB and D pair and its corresponding weak 
label formed a training triplet. Training involved optimizing a loss function containing 
binary cross entropy (BCE) component and a Dice Coefficient component (Equation 
1). Best loss utilized an equal weighting (alpha = beta = 0.5 in Equation 1). 

 ℒ!"!#$ = α ⋅ ℒ%&' + 	β ⋅ ℒ()*+  (1) 

The adapted-SPCNet was trained using five-fold cross validation with an 80-20 train-
ing-validation split. Images from 5 of the porcine specimens (a total of 283 images) 
were used for training and validation, and two porcine specimens (a total of 69 images) 
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were reserved for independent testing. Each model in the cross-validation was trained 
for 100 epochs using early stopping criteria. Augmentation included random horizontal 
and vertical flipping (RGB and D), and color jitter (RGB only). Z-score normalization 
was performed per specimen. 

2.4 Pose-Adjustment Registration 

Figure 2C shows the pose-adjustment registration process. The spine was segmented 
from pCT via thresholding and a surface point cloud was generated. Bone segmentation 
was performed by adapted SPCNet on a series of iSV images extending over the entire 
exposed lumbar spine. The predicted masks were applied to corresponding iSV point 
clouds, and the point clouds from all images were merged using tracking information 
into a composite point cloud that represented the exposed spine surface. Both pCT and 
iSV point clouds were rectified into a neutral spine pose using a nonlinear principle 
component analysis algorithm [19]. Depth images were then generated, respectively, 
and registered via a denseSIFT algorithm [20]. The 2D correspondence between depth 
images were used to compute 3D correspondences between pCT and iSV point clouds 
[13]. A global rigid registration was performed between pCT and iSV point clouds. 
Each vertebral level was then segmented using depth image from rectified pCT, and 
each level of pCT point cloud was rigidly registered with its iSV counterpart [13]. 

2.5 Evaluation 

To quantify performance of a trained model, an average Dice Coefficient was calcu-
lated for the validation data set for hyperparameter selection. Dice Coefficient between 
the predicted segmentations and weak labels was computed for test images. Given la-
bels are weak and noisy, the accuracy of Dice Coefficient does not faithfully portray 
the accuracy of the bone segmentation algorithm. However, they do provide a means 
to roughly assess the algorithm for the next module – pose-adjustment registration.  

To quantify the accuracy of the pose-adjustment registration, a target registration 
error (TRE) was calculated for each fiducial and each vertebral level. Specifically, the 
distances between corresponding fiducial locations from ground truth iCT and the pose-
adjusted pCT were calculated. Average TRE of each vertebral level and across levels 
were reported for both test specimens. Additionally, the distances between fiducials in 
pCT and their counterparts in the surgical field were quantified to measure the preoper-
ative-to-intraoperative motion. 

2.6 Experiments & Ablation Studies 

While the composite accuracy of the co-registered iCT-iSV dataset was used to select 
distance threshold for weak label generation, various thresholds ranging from 3 to 5.5 
mm were utilized for classification of bone surface via label transfer. Evaluation and 
selection of the final threshold as 3 mm was guided by an expert user of the surgical 
navigation system (with >15 years of experience) based on conformity of the resulting 
bone masks to the transverse process surfaces when displayed in the RGB images and 
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minimization of the inclusion of surrounding soft tissue, as well as error sources con-
tributing to RGB-D data, e.g. calibration, reconstruction, and tracking [12]. Experimen-
tation with morphological operations was performed and hole filling applied to all weak 
labels. 

Ablation experiments for the bone segmentation model included training with (a) 
RGB only, D only, and both RGB and D as inputs to the model, and (b) different com-
binations of binary cross-entropy and/or Dice losses. The model with optimal validation 
set performance was chosen as our bone segmentation model. 

Various bone segmentation masks were used to run the pose-adjustment registration. 
A series of 5-6 iSV images per test specimen were chosen as inputs to the registration 
framework that provided full coverage of the lumbar spine. Three sets of bone segmen-
tation masks were applied to this series of iSV images: (1) the weak labels correspond-
ing to each image, (2) manually contoured bone surfaces by an expert user, and (3) the 
adapted-SPCNet predictions from the selected model. These masks, when applied to 
the iSV images, created a surface reconstruction of lumbar bone surface that was passed 
to the registration process. The TREs using each set of bone segmentation masks were 
computed to compare the overall performance of each segmentation. 

3 Experimental Results 

3.1 Qualitative Assessment of Cross Modality Label Transfer  

The evaluation of the Sparse-XM method was first performed by qualitatively assessing 
the labels generated by the cross-modality label transfer and the resulting bone segmen-
tation by the adapted-SPCNet. Representative weak labels and predicted labels are 
shown in Figure 3. The weak labels (green) contained irregular contours due to noises 
and errors, whereas predicted segmentation masks (red) produced regular shapes. 

 
Fig. 3. Representative examples of the weak label generated via the cross-modality label transfer 
process (green). Sample predictions are shown from Sparse-XM (red). 

3.2 Bone Segmentation Results for Model Selection 

The model with RGB and depth images as inputs to the independent branches of our 
adapted SPCNet model yielded the best performance, over using either RGB or depth 
images alone as inputs. We posit the preferred performance using RGB+D was due to 
complementary information in the images captured by the model. The performance of 
BCE, Dice, and weighted average of BCE and Dice losses were comparable on the test 
set (85.4±8.8%, 85.8±7.1%, and 86.4±6.9% respectively). While the average dice co-
efficient was calculated, it was a secondary endpoint of the Sparse-XM performance. 
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3.3 Pose-Adjustment Registration Accuracy 

The output of the registration framework was a pose-adjusted model of the pCT such 
that each vertebral level was aligned with the reconstructed bone surface from iSV im-
aging. The distance between the fiducial locations from the adjusted pCT model and 
the locations measured on iCT was reported as a target registration error (TRE) per 
vertebral level as the primary endpoint of the Sparse-XM performance. Table 1 shows 
TREs with three types of segmentation mask applied to the series of iSV images: weak 
label, manual, and prediction by adapted-SPCNet. The average TRE across 12 levels 
was significantly lower (p<0.05) when driving the pose-adjustment registration frame-
work with predicted masks, compared to weak labels and manual contours (5 and 6 
images for test samples 1 and 2 respectively). Normality of the paired-difference was 
assessed and either a paired t- or Wilcoxon signed-rank test applied as appropriate for 
determination of statistical significance. 

Table 1. Target Registration Error of Pose-Adjusted Registration using Weak Labels, Manual 
Contours, and predictions from the Sparse-XM approach 

Units of mm Porcine Test Sample 1 Porcine Test Sample 2 

Level 
Weak  
Label 

Manual 
Sparse-

XM 
Weak  
Label 

Manual 
Sparse-

XM 
1 2.6±0.8 2.2±0.8 2.2±1.1 3.8±0.6 2.9±1.3 2.6±1.4 
2 2.0±0.0 1.8±0.3 1.0±0.1 2.0±0.4 0.9±0.3 1.0±0.5 
3 1.4±0.1 2.5±0.4 1.8±0.4 2.1±0.8 2.2±0.6 2.0±1.5 
4 2.3 1.8 1.0 1.7±0.3 2.7±0.6 2.2±1.4 
5 3.0±1.2 1.2±0.5 1.4±0.3 2.1±0.6 5.5±3.1 2.3±0.2 
6 3.0±0.3 3.5±0.4 3.2±1.6 2.5±1.5 2.8±1.0 2.7±1.6 

Mean 2.4±0.6 2.2±0.8 1.8±0.9 2.4±0.8 2.8±1.5 2.1±0.6 

To quantify the amount of motion corrected by the pose-adjusted registration, the TREs 
were reported using the pCT registration and compared to the pose-adjusted registra-
tions using Sparse-XM (Figure 4). The average TRE using pCT was 9.1±6.8 mm across 
all fiducials. The higher TREs at L1 and L6 (up to 25 mm) indicate the amount of 
preoperative-to-intraoperative motion that has occurred. In contrast, TREs using 
Sparse-XM were evenly distributed across levels. 

 
Fig. 4. Comparison of pose-adjusted vs. pCT-based registration averaged over each level for each 
test specimen. Higher registration error is observed at L1 and L6 of the uncorrected registration. 
L2 results for Test Samples 1 and 2 are equivalent for the Sparse-XM approach. 
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4 Discussion 

In this study, we present Sparse-XM, a fully automated level-wise registration for pose 
adjustment in image-guided open spine surgery, through a series of advances. First, the 
labeling process was fully automated for adoption of deep learning methods for seg-
mentation to address the significant human effort and time required to label training 
data for deep learning models. In medical imaging segmentation, labeling typically in-
volves manually drawing contours in each image, which requires expertise (e.g., a phy-
sician), is subject to inter-/intra-user variability, is time-consuming and resource-inten-
sive, and slows technical development. We leveraged co-registered datasets and gener-
ated bone labels automatically in a challenging image modality (iSV) through co-reg-
istration with images from a modality where corresponding labels were easily produced 
(CT). Although iCT images were used to generate weak labels for training, they are not 
required at inference, making Sparse-XM clinically relevant. Second, bone segmenta-
tion from iSV was fully automated by incorporating an adapted-SPCNet that integrates 
complementary information from RGB and Depth channels of iSV. In prior studies, 
manual bone segmentation in iSV images was provided by a user, which added time, 
required technical and medical expertise, and was subject to user error. 

The accuracy of Sparse-XM was assessed in terms of fiducial TREs. The pose ad-
justment in test cases was successful. Registration using pCT showed higher TREs (up 
to 25 mm) towards the ends of exposure (L1 and L6) due to pose change, whereas the 
Sparse-XM TREs were evenly distributed across levels (Figure 4) and the overall TREs 
meet clinically acceptable range [21]. The overall TRE measurements were affected by 
all components in the registration framework, including iSV reconstruction (~1.2 mm), 
bone segmentation, and tracking accuracy (< 1 mm), and level-wise registration [12]. 
In addition, the co-registration error in label transfer was subject to similar reconstruc-
tion and tracking errors, and affected the labeling accuracy (e.g., Figure 3). We selected 
3 mm as a distance threshold to provide sufficient labels while not exceeding the clini-
cally acceptable accuracy [21]. Nevertheless, the adapted SPCNet architecture was ro-
bust to noises in weak labels and learned sufficient features. The accuracy of bone seg-
mentation in the test cases was not assessed using Dice Coefficient, as Dice Coefficient 
did not directly correlate with the overall TREs. For example, a high Dice Coefficient 
mask with artifacts (false positive) can produce higher TREs than a low Dice Coeffi-
cient mask with only true positive segmentation, as segmentation inaccuracy can be 
propagated through the pipeline and bias downstream point cloud registration. There-
fore, Dice Coefficient was used as a secondary measure. Indeed, the TREs using pre-
dicted mask outperformed their counterparts using weak labels (2.0±1.1mm vs. 
2.4±0.9mm). More importantly, the Sparse-XM TREs outperformed their counterparts 
with manual segmentation (2.0±1.1mm vs. 2.5±1.5mm) likely due to the incorporation 
of additional depth information, not provided to the user for manual segmentation. Clin-
ically, this 0.5mm improvement corresponds to 10% of a 5mm lumbar pedicle screw 
safety margin [22]. Clinical data acquisition is underway for future validation studies. 
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5 Conclusion 

We have developed and evaluated a fully automated pose adjustment registration 
framework to compensate for alignment change in open spine surgery. Cross-modality 
labels were automatically generated for adoption of a deep learning approach, and bone 
surface was automatically segmented from an intraoperative vision system using both 
RGB-D information and registered with preoperative CT for each vertebral level. Quan-
titative error assessments showed an improved accuracy in two test cases compared to 
counterparts with manual segmentation. By eliminating user dependency and user er-
ror, our Sparse-XM approach can be adopted more broadly for clinical applications.  
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