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Abstract. Deep learning advances have revolutionized automated dig-
ital pathology analysis. However, differences in staining protocols and
imaging conditions can introduce significant color variability. In deep
learning, such color inconsistency often reduces performance when de-
ploying models on data acquired under different conditions from the
training data, a challenge known as domain shift. Many existing meth-
ods attempt to address this problem via color normalization but suffer
from several notable drawbacks such as introducing artifacts or requiring
careful choice of a template image for stain mapping. To address these
limitations, we propose a trainable color normalization model that can
be integrated with any backbone network for downstream tasks such as
object detection and classification. Based on the physics of the imaging
process per the Beer-Lambert law, our model architecture is derived via
algorithmic unrolling of a nonnegative matrix factorization (NMF) model
to extract stain-invariant structural information from the original pathol-
ogy images, which serves as input for further processing. Experimentally,
we evaluate the method on publicly available pathology datasets and an
internally curated collection of malaria blood smears for cross-domain
object detection and classification, where our method outperforms many
state-of-the-art stain normalization methods. Our code is available at
https://github.com/xutianyue/BeerLaNet.
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1 Introduction

Pathological examination plays a fundamental role in disease diagnosis, provid-
ing critical insights into tissue morphology, cellular abnormalities, and disease
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progression. However, manual assessment of digital pathology images is labor-
intensive, time-consuming, and subject to inter- and intra-observer variability
[20,19]. Deep learning-driven analysis offers a promising alternative but struggles
with a major challenge for model generalizability: color inconsistency in digital
pathology. Recorded images can have significant differences in stain appearance
even with the same staining protocol, caused by (i) differences in chemical reac-
tions and exposure times of dyes, (ii) variability in sample preparation, and (iii)
variable imaging conditions across different scanning hardware [15]. While expe-
rienced pathologists can interpret slides despite stain variability, deep learning
models are prone to performance degradation [3], leading to poor generaliza-
tion across different staining protocols and acquisition settings. This challenge is
closely related to domain adaptation, a key discipline in deep learning that aims
to improve generalization across different data distributions. To address this
challenge, a strategy called stain color normalization is widely used in domain
adaptation methods specific to medical pathology.

Traditional stain color normalization approaches often attempt to match
statistics of the color distribution of test images to those of images in the training
domain [13]. Yet, the effectiveness of these methods strongly relies on selecting
appropriate representative templates from the training domain to match, which
can require prior knowledge of the domain. Moreover, these methods can be
generic color transformations that do not account for the underlying physics of
histological staining. Other methods leverage algorithms to decompose the color
space of a reference image into different dye staining components [11,18]. While
these methods account for the underlying physics of histological staining and
image acquisition, they still rely on a predefined template which the method
attempts to match and, in some cases, require additional prior knowledge, such
as the absorption spectrum matrix of specific dyes or the number of distinct
color components within the images [18]. More recently, deep learning-based ap-
proaches such as generative adversarial networks (GANs) [16] have been explored
for stain style transfer. However, despite their success in aligning color distribu-
tions and overall appearance, it has been noted that they can often introduce
synthetic artifacts or ‘hallucinate’ cellular structures, posing risks in medical di-
agnosis [12]. Other deep learning methods have also proposed to use attention
mechanisms to identify relevant color transformations from a variety of standard
normalized color spaces, but these methods are also largely generic and do not
necessarily account for the relevant image formation process [10].

To overcome these limitations, we propose the Beer-Lambert Net (Beer-
LaNet). Our key contributions include: (1) Adaptive Stain Disentangle-
ment: Unlike previous methods, which focus largely on hematoxylin and eosin-
stained images, BeerLaNet extends to arbitrary staining protocols, learning
stain-invariant representations of images without requiring any prior knowledge
of the staining protocol. (2) Trainable and Physics-Informed: Built on non-
negative matrix factorization (NMF) and algorithmic unrolling, BeerLaNet en-
ables a data-driven, end-to-end stain decomposition process based on the imag-
ing physics. (3) Flexible Integration: Designed as a plug-and-play module,
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BeerLaNet can be combined with arbitrary backbone networks for downstream
tasks, such as object detection or image classification.

2 Technical Background

Each stain can be considered a unique element that interacts with light in a
specific way. In an RGB image, every stain has distinct absorption characteris-
tics across the three spectral channels, influencing the observed color intensity.
To mathematically describe how stains modify light intensity in histological im-
ages, we rely on the Beer-Lambert law [14], which models how incident light
is attenuated by stains based on their concentration and absorption properties.
Specifically, the absorption of stains by histological structures attenuates the in-
cident light on stained biological samples in a specific color spectrum. Given an
image X̄ = [x̄0, x̄1, ..., x̄p] ∈ Rc×p, where x̄i ∈ Rc contains the c color intensities
for the ith pixel (c is typically 3 for RGB images) and p is the number of pixels
in the image, then when light x̄0 ∈ Rc illuminates the image, the color intensity
at each pixel is given by the Beer-Lambert law;

X̄ = (x̄01
⊤)⊙ e−SD⊤

(1)

where S = [s1, s2, ..., sr] ∈ Rc×r is the color appearance matrix whose ith column
contains the color spectra of the ith colored component (e.g., the color of a stain
or a naturally colored material in the specimen, such as hemoglobin in red blood
cells), r is the number of colored components, D = [d1,d2, ...,dr] ∈ Rp×r is the
optical density matrix whose ith column contains the optical density of the ith

colored component at each pixel, 1 denotes a vector of all ones, and ⊙ denotes
the element-wise matrix product.
Matrix factorization for stain separation. Based on the Beer-Lambert law,
prior approaches have proposed models for stain normalization based on matrix
factorization models. In particular, taking an element-wise logarithm on both
sides of (1) gives

ln(X̄) = ln(x̄0)1
⊤ − SD⊤ ⇐⇒ ln(x̄0)1

⊤ − ln(X̄) = SD⊤ (2)

so by estimating a low-rank approximation SD⊤ (recall the number of columns r
in (S,D) corresponds to the number of stains/colored materials in the specimen)
one could hope to have a reliable decomposition of the image into color and
spatial optical density components. For example, the authors of [11] propose a
model which estimates the image background x0 via a heuristic and the estimates
S and D via principal component analysis (PCA). The estimates of S and D are
then normalized via further heuristics before reforming a normalized version of
the original image using the normalized (x0,S,D) parameters in (1).

While the above model has the benefit of being motivated by the image
formation physics, the use of PCA for estimating S and D has clear deficiencies,
as it requires the columns of the matrices to be orthogonal, which is clearly not
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Fig. 1. Overview of our proposed BeerLaNet method.

realistic for the problem. As a result, the authors of [18] propose a sparse NMF
model of the form:

min
x0,S,D

1

2
||x01

⊤ −X− SD⊤||2F + λ

r∑
i=1

∥di∥2 s.t. ∥si∥2 = 1,∀i, S,D ≥ 0. (3)

The model in (3) is motivated by the fact that the color spectra and opti-
cal density matrices are known to be nonnegative and additionally adds sparse
regularization on the columns of D via the ℓ1 norm based on the common as-
sumption that the relevant histological features of interest are sparse in space.
After estimating the parameters of the model in (3) the authors then produce
a stain-normalized image by applying heuristics to normalize the columns of D.
They then use (1) with the normalized estimate of D but discard the estimated
S matrix and instead use a fixed color spectra matrix which has been estimated
from a template image whose color the method hopes to match. However, this
presents challenges in practice as one must choose a suitable template image
and corresponding color spectra matrix and the columns of the estimated S
and D matrices could be permuted from the corresponding color spectra ma-
trix, resulting in significant color distortions. Further, the method also requires
one to carefully select both the sparse regularization strength, λ, and the rank
of the matrix factorization r. In the following section we present our proposed
BeerLaNet method and describe how it alleviates many of these problems.

3 Method

To derive our method, we begin with similar assumptions to the sparse NMF
model described above, but we make several key modifications to mitigate the
issues described above and to allow for our method to be incorporated in an
end-to-end fashion with any desired deep network model for further downstream
tasks. Specifically, we note that the NMF model in (3) is non-convex and requires
one to solve a non-convex optimization problem due to the SD⊤ matrix product.
Moreover, the number of columns in S and D needs to be specified a priori, which
can be challenging in applications where the number of colored components
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is unknown such as when the specimen itself contains colored components in
addition to the applied stain (e.g., hemoglobin in red blood cells).

We address these issues by first leveraging literature on optimizing structured
matrix factorization models [6,7] and modify (3) into the following formulation:

min
x0,S,D

1

2
||x01

⊤−X−SD⊤||2F +λ

r∑
i=1

∥si∥2(γ∥di∥1+ ∥di∥2) s.t. S,D ≥ 0. (4)

Compared to the model in (3) the key difference is that we have incorporated
an additional ℓ2 regularization on the columns of S and D which is known to
promote low-rank solutions due to connections with the variational form of the
nuclear norm [6,7]. This allows us to initialize the number of colored components
(r) larger than the expected number of components and adapt the rank of the
solution to the data. We then derive our method from an algorithmic unrolling
of (4) which can be integrated in an end-to-end manner with any deep network
architecture for further downstream tasks as we describe below.
Unrolled Network Architecture. To derive our proposed method, we design
an architecture via an algorithmic unrolling of (4) via alternating proximal gra-
dient descent [4]. Specifically, we make the regularization parameters (γ, λ) and
the initialization for S (Sinit) learnable parameters (with x0 and D initialized
as all zeros), then our algorithm first updates x0 in closed form, followed by
updates to D and S by taking a gradient descent step on the Frobenius norm
term in (4), followed by solving the proximal operator of the regularization term
and nonnegative constraints. This is then repeated for K unrolled layers, af-
ter which we reshape the recovered D matrix into an r-channel image passed
through a 1 × 1 convolution layer to map the image back to a 3-channel image
to allow for passing the image to a backbone network (e.g., YOLO, ResNet) for
downstream tasks, with the learnable parameters (Sinit, γ, λ) being updated via
backpropagation via supervision on the downstream task and with non-negative
constraints. An overview of our approach is depicted in Fig. 1, and the full details
of our method are given in Algorithm 1. Note that (·)+ denotes the element-wise
ReLU operation and the proximal operator of the regularization/constraints on
S and D can be shown to be computable by sequentially computing the proximal
operator of the non-negativity constraints and ℓ1 norm (for the update for D)
followed by the proximal operator of the ℓ2 norm [6,7].

4 Experimental Performance

We evaluate our method on a variety of modalities for two diagnostic tasks:
object detection and image classification. Here, we detail the modalities and
their respective role in our study, and example images showing the variance in
domain between training and testing data are displayed in Fig 2.
Malaria Parasite Detection and Classification. We used images of malaria
blood smears for both detection and classification tasks. For detection, we used a
public malaria parasite detection dataset by the authors of [5], which comprises
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Algorithm 1 Beer-Lambert Net (BeerLaNet)
Input: Image X ∈ Rc×p. # of unrolled iterations K. # of color components r.
Learnable Parameters: γ ∈ R, λ ∈ R, Sinit ∈ Rc×r.
Outputs: The optical density map matrix D ∈ Rp×r.
Initialize: S = Sinit, D = 0, x0 = 0.
for k = 1, ...,K do

x0 = 1
p
(X+ SD⊤)1 % Closed form update for x0.

τ = 1
∥S∥2

F
% Compute step size for D.

D = D− τ [DS⊤S+X⊤S− 1x⊤
0 S] % Gradient step of ∥ · ∥2F term w.r.t. D.

for i = 1, ..., r do
di = (di −λγτ∥si∥2)+ % Proximal operator of ℓ1 + non-negative constraints.

di = di

(
1− min{∥di∥2,λτ∥si∥2}

∥di∥2

)
% Proximal operator of ℓ2.

end for
τ = 1

∥D∥2
F

% Compute step size for S.

S = S− τ [SD⊤D+XD− x01
⊤D] % Gradient step of ∥ · ∥2F term w.r.t. S.

for i = 0, 1, ..., r do
si = (si)+

(
1− min{∥(si)+∥2,λτ(γ∥di∥1+∥di∥2)}

∥(si)+∥2

)
% Proximal operator for S.

end for
end for

24,720 May Grunwald-Giemsa (MGG)-stained thin blood smear images with an-
notations across four categories: white blood cells, red blood cells, platelets, and
parasites (including Trypanosoma brucei, and erythryocytes infected by Plas-
modium falciparum, P. ovale, P. vivax, P. malariase, and Babesia divergens).
We additionally collected and manually labeled a test dataset comprising 264
thin blood smear images captured from a Zeiss Axioscan microscope.

For classification, we assembled a diverse dataset from four microscopy plat-
forms, encompassing both manual and high-throughput imaging systems with
varying numerical apertures (Hamamatsu NanoZoomer, Zeiss Axioscan, Olym-
pus CX43, Morphle Hemolens). The source materials included Giemsa-stained
thin blood smears obtained from multiple origins: a clinical trial, laboratory-
prepared slides with spiked parasites, and de-identified slides from a malariology
course collection. Classification labels were independently assigned by two au-
thors (AKT, MMI), with any disagreements resolved through joint review by
both. The dataset consists of single-cell cropped images infected by P. falci-
parum, with a training set with 2,486 samples, and two test sets with 343 and
261 samples, each from a distinct domain (imaging platform). The classification
task was to label detected parasites by lifestage: early ring, middle ring, late
ring, trophozoite, schizont, and gametocyte, as shown in Fig. 2(a).

Breast Cancer Classification. The Camelyon17-WILDS dataset [2] is a large-
scale histopathology dataset for evaluating domain adaptation in medical image
analysis. It consists of 96× 96 image patches extracted from lymph node whole
slide images, with tumor presence labeled in the central 32 × 32 region. The



Adaptive Stain Normalization for Cross-Domain Medical Histology 7

Fig. 2. Example images from our tested datasets.

dataset spans five hospitals, introducing domain shifts in staining and imaging
conditions. It contains tumor/non-tumor classifications, with 302,436 training,
34,904 validation, and 85,054 test samples. Here we train on the 3 training
datasets and perform inference on the testing and validation datasets.

Whole Blood Cell Detection. We used two additional public datasets for de-
tecting various blood cell types from whole blood smears: the Blood Cell Count
and Detection (BCCD) dataset [17] containing 366 blood smear images for train-
ing, and the Blood Cell Detection Dataset (BCDD) [1] with 100 blood smear
images for testing.

Implementation Details. For BeerLaNet, we set the number of colored com-
ponent r to 8 and internal iterations to 10. For detection tasks, we implemented
our method with a YOLOv8 backbone [9]. The training parameter batch size was
set to 8, and the number of epochs was set to 50. The optimizer was automat-
ically chosen by YOLO with an initial learning rate of 0.01. For classification,
we trained the model using Adam optimization with a batch size of 128 and a
ResNet-18 backbone [8]. The P. falciparum malaria parasite dataset was trained
for 20 epochs and Camelyon-17 WILDS for 50 epochs, both with a learning rate
of 1e-4. For the malaria classification dataset, we also applied a two-step denois-
ing pipeline due to compression artifacts from the imaging platform: a median
filter with kernel size of 11, followed by a Gaussian blur with kernel size of 21
and σ = 1. All experimental results are reported as averages across 3 random
seeds.

Comparison Methods & Evaluation Metrics. We compared our proposed
method with 3 classical histology normalization methods—Reinhard [13], Ma-
cenko [11], and Vanhadane [18]—and two deep learning-based methods—Stain-
GAN [16] and LStainNorm [10]. For those methods requiring a template, we
randomly select one image from the training dataset as the template for nor-
malization. The inference results are evaluated by mAP50 and mAP50−95 on the
detection task. For classification we report classification accuracy (Acc), and for
the malaria parasite classification task we also report a relaxed accuracy (RAcc)
which considers a classification successful if the manual and predicted labels are
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Table 1. Comparison of Stain Normalization Techniques. The best and the second-best
results are boldfaced or starred (*), respectively. (C17 denotes Camelyon17-WILDS)

Task Detection (YOLOv8) Classification (ResNet18)
Dataset Malaria Whole Blood Cells Malaria C17test C17val
Metrics (%) mAP50 mAP50−95 mAP50 mAP50−95 APU Acc RAcc Acc Acc APU
Baseline 91.03 52.00 65.20 36.70 18.10 21.32 45.59 85.21 83.38 31.70
Reinhard 90.17 51.47 79.53 44.03 11.17 29.34 62.30 94.55 91.36* 18.36
Macenko 72.03 39.27 65.43 35.27 29.27 29.59 73.54 95.92 85.77 16.27
Vahadane 92.10* 55.87* 57.57 31.30 20.76 38.81* 81.04* 95.85* 86.43 9.31*
StainGAN 81.67 37.70 89.60 53.97 12.02 31.46 70.94 94.28 90.77 15.12
LStainNorm 91.80 53.67 85.83 50.00 5.25* 21.17 61.82 93.23 92.56 22.72
BeerLaNet 95.07 57.10 86.80* 51.33* 2.00 48.66 90.33 91.36 90.09 1.86

within one lifestage of each other for the early/middle/late ring stages (e.g., if
the manual label is ‘early ring’, then predictions of ‘early ring’ or ‘middle ring’
are considered correct) to reflect the fact that the parasite growth is a con-
tinuous process and the discretization into 3 stages is somewhat arbitrary. In
addition, to compute an average performance across all tasks and metrics, we
also introduce the average percent underperformance (APU) which computes the
percent difference between the current method and the best-performing method
for a particular task+metric (percent underperformance) and then averages this
across all task+metric combinations for either detection or classification. For
example, for each entry in Table 1, we compute the percent difference with the
maximum value in the column and then average the percent differences across
the 4 entries in the row for detection and classification.

Results. Our experiment results are presented in Table 1. Here we note that
BeerLaNet achieves the best performance for both the malaria parasite detec-
tion and classification tasks and the second highest performance on the whole
blood cell detection task, while also having excellent consistency across all tasks
and datasets. For example, on the Camelyon-17 WILDS classification task, the
Macenko method achieves the best performance on one dataset (C17test) but
drops 10 percentage points on the other Camelyon-17 WILDS dataset (C17val).
Likewise, for virtually all comparison methods, a large drop in performance can
be observed for one of the tasks/datasets. In contrast, even when BeerLaNet is
not the top method for a particular dataset, it still performs very competitively,
which is reflected in the APU metric, where BeerLaNet significantly outperforms
the comparison methods and quantifies the consistently strong performance of
BeerLaNet. We conjecture this discrepancy in performance across tasks/datasets
observed in comparison methods can potentially be attributed to greater domain
variations in the malaria dataset compared to Camelyon17-WILDS and whole
blood cell datasets (see Fig. 2), datasets with relatively minor color shifts com-
pared to those observed in the malaria dataset. Methods with a generic design
that do not incorporate stain-specific characteristics may perform well on small
domain shift data (Camelyon17-WILDS, whole blood cells) but fail to generalize
to the large color shifts observed in the malaria dataset. This highlights the flex-
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ible nature of BeerLaNet to perform robustly in a variety of conditions without
prior knowledge of imaging or staining protocols.

5 Discussion and Conclusion

Here we have presented BeerLaNet, an adaptive stain normalization method that
enhances cross-domain generalization in digital pathology through physics-based
principles and algorithmic unrolling. Our experimental results demonstrate that
BeerLaNet consistently outperforms traditional normalization techniques across
multiple tasks and datasets. The key advantages of BeerLaNet include end-to-
end trainability, template-free operation, physics-informed decomposition, and
flexibility with various staining protocols. Potential future work could focus on
exploring additional tasks such as segmentation and other histopathological do-
mains.
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