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Abstract. The integration of deep learning into medical vision appli-
cations has led to a growing demand for interpretable predictions. Typ-
ically, classification and explainability are treated as separate processes,
with explainability methods applied post hoc to pre-trained classifiers.
However, this decoupling introduces additional computational costs and
may lead to explanations misaligned with the underlying model. In this
paper, we propose One For All (OFA), an efficient, single-stage approach
that jointly optimizes classification accuracy and self-explanation during
training. OFA achieves this through a multi-objective framework, elimi-
nating the need for separate explainability models while ensuring faith-
ful and robust explanations. Extensive experiments on medical datasets
confirm that OFA delivers competitive classification performance while
providing high-quality, inherently interpretable explanations, making it
a scalable and versatile solution for fully explainable classification.
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1 Introduction

The integration of artificial intelligence (AI) into medical imaging has signif-
icantly enhanced diagnostic accuracy, disease detection, and clinical decision
support. Deep learning models now assist in identifying pathologies across vari-
ous imaging modalities, offering substantial benefits in efficiency and diagnostic
consistency. However, the widespread adoption of these models in healthcare
remains constrained by a critical challenge: the lack of explainability. Trust in
AI-driven medical decisions is essential for regulatory approval, clinician accep-
tance, and ultimately, patient safety.

To address this, explainability methods have been developed to elucidate how
AI models generate predictions. Post-hoc approaches, which generate explana-
tions after a model has made its prediction, often rely on perturbation-based sur-
rogate models [8, 19] or sampling techniques [21]. While effective, this multi-step
pipeline introduces substantial computational costs and potential misalignment
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Fig. 1. Predictions and attribution scores of OFA-classifiers trained on the datasets
OrganCMNIST+, BloodMNIST+, PathMNIST+, DermaMNIST+ and OctMNIST+.

between predictions and explanations, when generated by two decoupled models.
In the context of medical imaging, where efficiency is crucial, these limitations
hinder broader applicability. In contrast, on-the-fly explainability approaches
integrate explanation generation directly into inference, enabling real-time at-
tribution with minimal additional cost [1, 9, 24]. Attention mechanisms [1, 9] in
transformer-based models [11] exemplify this approach by producing attribution
scores inherently during prediction. While computationally efficient, the attri-
bution estimates of these methods often lack in faithfulness, as they are not
explicitly optimized for explainability [13, 15, 23].

In this work, we operate within the domain of on-the-fly explainability,
and introduce One For All, a unified approach to image classification and self-
explanation. Our method leverages principles from approximation-based removal
techniques to generate faithful explanations while eliminating the need for a sepa-
rate explainer model. Specifically, we employ a multi-objective training strategy
to train a single model that simultaneously performs classification and gener-
ates consistent attribution scores. In a comprehensive evaluation, we conducted
multiple studies across seven medical imaging datasets spanning different modal-
ities from MedMNIST+ [28] assessing both predictive accuracy and explanation
quality. Our results demonstrate that our pipeline maintains predictive accuracy
comparable to standard classification optimization. Moreover, our method sig-
nificantly outperforms both gradient-based and attention-based approaches in
attribution quality, as evidenced by both quantitative and qualitative analyses.
Overall, our approach provides a unified solution for explainable medical image
classification, combining computational efficiency and high-quality explanations
without compromising predictive accuracy. By aligning predictions and explana-
tions within a single model, it enhances interpretability, simplifies deployment,
and strengthens the trust and reliability essential for clinical decision-making.
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2 Related work

The growing demand for explainable AI has led to the exploration of several
on-the-fly attribution methods, each addressing different aspects of model inter-
pretability. Class Activation Maps (CAM) were initially developed for Convolu-
tional neural networks (CNNs) and focus on generating feature importance maps
by weighting the activation maps of the final convolutional layer [29]. Grad-CAM
and its variants [5, 10, 22] offer more flexibility but still face limitations when
applied to transformer-based architectures [8]. Attention-based methods, which
take advantage of the attention mechanism in transformer models, attempt to
track the flow of information between input tokens and class tokens [1, 7]. While
attention scores can offer some insights, they often focus on less informative re-
gions, limiting their effectiveness [8, 9]. Gradient-based methods, such as Saliency
Maps [24] and Integrated Gradients [27], compute gradients of the class scores
relative to the input, with newer techniques like SmoothGrad [25] and Integrated
Gradients offering more stable and refined results. Finally, Layer-Wise Relevance
Propagation (LRP) methods [3, 18], which propagate model predictions back to
the input to highlight relevant features, have proven effective for CNNs but en-
counter challenges with transformers due to their architecture [2, 6], prompting
various adaptations to stabilize the explanations.

In contrast to these methods, OFA leverages principles of post-hoc removal-
based approaches [8, 19] by training a segmentation model for classification
alongside an auxiliary loss for self-explanations. However, unlike traditional post-
hoc methods, our approach integrates classification and explanation within a
single model, enabling both tasks to be performed in a single inference step.

3 Background

3.1 Shapley Values

Shapley values, originally introduced in cooperative game theory, provide a prin-
cipled approach to fairly distributing an outcome among a set of contributors [8].
In the context of explainable AI, they quantify the contribution of each feature
to a model’s prediction. Given a feature set N and a function v(S) representing
the model’s prediction for a subset S ⊂ N , the Shapley value ϕi of a feature
i is computed as the weighted average of its marginal contributions across all
possible subsets of features, expressed as:

ϕi =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!

|N |!︸ ︷︷ ︸
wS

(v(S ∪ {i})− v(S)) (1)

An alternative perspective on Shapley values was introduced by [16], which
avoids explicit marginal contribution terms. Instead, Shapley values are ex-
pressed as the difference between two weighted expectations—one when the
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feature is present and one when it is absent:

ϕi =
∑

S⊆N\{i}

wS · v(S ∪ {i})

︸ ︷︷ ︸
ϕ+
i

−
∑

S⊆N\{i}

wS · v(S)

︸ ︷︷ ︸
ϕ−
i

(2)

where ϕ+
i and ϕ−

i correspond to expected model predictions conditioned on the
inclusion and exclusion of feature i, respectively. This formulation enables more
flexible optimization strategies for Shapley value estimation.

While both formulations consider all possible subsets of features, ensuring a
theoretically sound measure of contribution, computing exact Shapley values is
computationally infeasible for high-dimensional feature spaces due to the expo-
nential growth in the number of subsets.

3.2 Approximate Shapley Value Estimation

To address the computational complexity of Shapley values, various approxima-
tion methods have been proposed. One such approach, FastShap [14], estimates
Shapley values by solving a least-squares problem over a subset distribution
pw(S) ∝ wS , where samples are drawn proportionally to the weighting term wS :

Epw(S)

[
(v(S)−

∑
i∈S

ϕi)
2

]
(3)

Despite improving computational efficiency, using the Mean Squared Error
(MSE) to approximate probabilistic model outputs introduces limitations. MSE
is designed for scalar comparisons and does not inherently account for the prob-
abilistic nature of model predictions. It fails to capture uncertainties, lacks scale
invariance, and does not enforce probability constraints such as normalization,
potentially leading to inaccurate or inconsistent attribution estimates.

To address this issue, a recent work [19] proposes an alternative approxima-
tion approach. Instead of directly minimizing MSE, feature subset values are
mapped to a probability distribution, which is then optimized by minimizing
its divergence from the true prediction distribution. Given a feature subset S,
the sum of the positive Shapley values ϕ+ of the included features and the sum
of the negative Shapley values ϕ− of the masked features are combined into a
probability distribution, referred to as the Shapley distribution u(S):

u(S) = σ

(∑
i∈S

ϕ+
i +

∑
i/∈S

ϕ−
i

)
(4)

where σ represents a softmax function for multiclass settings or a sigmoid
function for binary classification. The Shapley distribution is optimized during
training by minimizing the Jensen–Shannon (JS) divergence between the esti-
mated distribution u(S) and the target model’s predicted distribution v(S).
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4 Method: One For All

To achieve effective and efficient explainability, OFA integrates the principles
of Shapley distribution estimation [19] directly into the classification training
framework. The input image is partitioned into n patches, which are processed
to estimate the positive and negative Shapley values, ϕ+ and ϕ−, both of shape
n× C, where C denotes the number of classes. OFA is trained end-to-end with
three loss terms that jointly optimize both classification and explanation.

4.1 Classification

OFA optimizes classification by maximizing the log-likelihood of the Shapley
distribution over all image patches N with respect to the ground-truth class y,
using a cross-entropy loss:

l1 = CE

(
σ

(∑
i∈N

ϕ+
i − ϕ−

i

)
, y

)
(5)

4.2 Robustification to Masking

OFA’s self-explanation mechanism builds on removal-based attribution methods,
which state that masking important regions should strongly affect predictions,
while masking irrelevant ones should not. However, this principle holds only if the
model is inherently robust to masking—that is, if its predictions remain stable
when irrelevant regions are removed. To enforce this robustness, we encourage
consistency in masked-image predictions by maximizing the log-likelihood of the
ground-truth class. This is achieved by uniformly sampling one mask for each
image and minimizing the cross-entropy loss between the Shapley distribution
of masked images S, defined in Equation (4), and the ground-truth class y:

l2 = CE

(
σ

(∑
i∈S

ϕ′+
i +

∑
i/∈S

ϕ′−
i

)
, y

)
(6)

4.3 Self-Explanation

To ensure that the model produces meaningful explanations, we introduce a
consistency constraint on the Shapley distribution. The underlying idea is that
the contribution of image patches to the prediction should remain stable across
different perturbations. Specifically, when an image is masked, the Shapley values
should be consistent with those computed for the unmasked image. To enforce
this consistency, we sample n=32 masks from the informed mask distribution
presented in [19] and minimize the Kullback-Leibler (KL) divergence between
the Shapley distributions of the original and masked images:

l3 = DKL

(
σ

(∑
i∈S

ϕ+
i +

∑
i/∈S

ϕ−
i

)∥∥∥σ(∑
i∈S

ϕ′+
i +

∑
i/∈S

ϕ′−
i

))
(7)
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4.4 Overall Pipeline

One For All is trained following the three objectives—classification, robustness to
masking, and self-explanation—into a unified training objective L = l1 + l2 + l3.
During inference, the (unmasked) input image is passed to OFA to compute
the positive and negative shapley values (ϕ+ and ϕ−). These values are then
used to derive the classification prediction through the Shapley distribution:
σ
(∑

i∈N ϕ+
i − ϕ−

i

)
∈ [0, 1]C where the contribution of each patch i to each class

is inherently captured by its Shapley value ϕi = ϕ+
i − ϕ−

i ∈ C.

5 Experiments

5.1 Experimental setup

To evaluate OFA, we conduct experiments on a diverse set of medical imag-
ing datasets, covering a range of classification tasks: PathMNIST+, DermaM-
NIST+, OCTMNIST+, PneumoniaMNIST+, RetinaMNIST+, BreastMNIST+,
BloodMNIST+, OrganCMNIST+, and OrganSMNIST+ [28]. For each dataset,
models are trained for approximately 10,000 iterations, with a maximum of 100
epochs. Both OFA and Segmenter adapt the Segmenter architecture from [26],
utilizing a ViT-B backbone and a single transformer block as decoder. All Vi-
sion Transformer [11] classifiers and backbone models are based on the ViT-B
configuration, with an image size of 224 and a patch size of 16 (a total of 196
patches), and utilizing registers as described in [9]. These models are initialized
with the pre-trained weights from DINOv2 [20]. Training is conducted with a
batch size of 64, using the AdamW optimizer [17] with a learning rate of 1e− 5
and a weight decay of 1e− 5.

5.2 Classification performance

We evaluate the classification performance of OFA by comparing it to ResNet-18
[12], ResNet-50 [12], and a ViT-B [11] classifier. Additionally, we compare the
results of our method to a baseline model (Segm-B) that adopts the same neural
architecture [26] but is trained solely using the cross-entropy classification objec-
tive Equation (5). This comparison serves to assess the impact of the auxiliary
loss terms—specifically, the robustness to masking and the self-explanation ob-
jectives—on the classification performance of the model. We adopt the masking
strategy from Dinov2 using a learned mask embedding, which is assigned to all
masked patches.

The results in Table 1 highlight three main points. First, ResNet architectures
are outperformed by all transformer models across most datasets, particularly in
AUC and accuracy, demonstrating the advantage of transformer-based models in
capturing global context. Second, using a segmentation model for classification
does not seem to affect performance when using (nearly) the same architecture,
as ViT-B and Segm-B show similar performance on average. Finally, OFA-B
performs similarly to Segm-B, indicating that the auxiliary losses, specifically



One For All: A Unified Approach to Classification and Self-Explanation 7

Table 1. Comparison of classification performance across different models (ResNet-18,
ResNet-50, ViT-B, Segm-B, and OFA-B) on various datasets from MedMNIST+. The
table reports AUC and accuracy for each model.

Path Derma OCT Pneumonia Retina
Model AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

ResNet-18 98.9 90.9 92.0 75.4 95.8 76.3 95.6 86.4 71.0 49.3
ResNet-50 98.9 89.2 91.2 73.1 95.8 77.6 96.2 88.4 71.6 51.1

ViT-B 99.7 97.5 98.2 90.9 99.7 93.0 98.8 91.0 85.9 64.0
Segm-B 99.8 96.6 98.5 90.4 99.6 92.8 92.9 91.7 86.5 66.3
OFA-B 99.6 97.0 99.0 91.6 99.8 92.7 96.6 91.3 88.7 68.3

Breast Blood OrganC OrganS
Model AUC ACC AUC ACC AUC ACC AUC ACC

ResNet-18 89.1 83.3 99.8 96.3 99.4 92.0 97.4 77.8
ResNet-50 86.6 84.2 99.7 95.0 99.3 91.1 97.5 78.5

ViT-B 91.9 89.7 100.0 99.2 98.2 85.8 97.4 83.4
Segm-B 92.5 91.0 99.9 99.2 98.6 85.7 98.1 83.8
OFA-B 93.8 88.5 100.0 99.2 98.7 84.7 98.3 83.2

robustness to masking and self-explanation, do not compromise classification
performance.

5.3 Explanation Evaluation

We perform both quantitative and qualitative analyses across nine different
datasets, comparing our method with two baselines: Vanilla gradient (Grad)
[24] and the attention scores from the last transformer block (Attn) [1]. Quanti-
tative performance is evaluated using two metrics: SRG (Symmetric Relevance
Gain) [4] and R-SRG (Relatively Symmetric Relevance Gain) [19].

SRG is a ranking-based metric that assesses attribution methods by measur-
ing the change in model performance when features are ranked by importance
and either added or removed. It focuses on the consistency of feature rankings
and their impact on model predictions. R-SRG extends SRG by incorporat-
ing weighted sampling based on feature importance. Instead of merely ranking
features, R-SRG evaluates the relative importance of each feature through sam-
pling, offering a more accurate assessment of attributions by accounting for the
magnitude of feature contributions.

As shown in Table 2, OFA consistently outperforms both gradient- and
attention-based methods across all datasets. This is evident from the significantly
higher SRG and R-SRG scores achieved by OFA, demonstrating its superior
ability to generate accurate and reliable attributions. Additionally, we present
qualitative results in Figure 2 in the form of attribution maps corresponding to
the predicted class. These results further highlight the effectiveness of OFA in
producing clearer and more interpretable explanations for the predicted class.
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Table 2. SRG and R-SRG scores for the proposed OFA method compared to gradient-
based (Grad) and attention-based (Attn) methods across nine different datasets.

Path Derma OCT Pneumonia Retina
Method SRG R-SRG SRG R-SRG SRG R-SRG SRG R-SRG SRG R-SRG

Attn -4.95 -0.88 -8.83 -3.98 -18.35 -8.31 -1.31 -0.01 2.78 1.51
Grad -1.69 -1.02 12.16 3.05 43.17 10.50 1.01 0.30 18.28 5.96
OFA 35.26 12.47 22.91 10.43 55.32 23.95 36.22 4.19 20.28 10.98

Breast Blood OrganC OrganS
Method SRG R-SRG SRG R-SRG SRG R-SRG SRG R-SRG

Attn -0.04 0.06 -7.36 -4.63 1.62 0.69 3.23 0.45
Grad 19.06 2.14 36.45 3.41 5.55 0.30 9.22 1.13
OFA 22.15 7.11 65.35 28.80 29.42 11.05 32.37 13.95
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Fig. 2. Attribution maps for the predicted class generated by the proposed OFA
method, compared to gradient-based and attention-based methods.

6 Conclusion

In this work, we presented One For All, a novel and effective approach to inte-
grating explainability directly into the image classification process. By combining
classification and self-explanation into a single model with multi-objective train-
ing, we eliminate the need for a post-hoc computation, significantly reducing
computational costs without sacrificing predictive performance. Our extensive
evaluation across diverse medical imaging datasets demonstrates that One For
All not only maintains high classification accuracy but also delivers more faithful
and reliable explanations compared to existing methods. This unified approach
has the potential to improve the interpretability and trustworthiness of AI sys-
tems in medical contexts, ultimately advancing the role of explainable AI in
clinical decision-making.
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