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Abstract. The field of computational pathology has recently seen rapid
advances driven by the development of modern vision foundation models
(FMs), typically trained on vast collections of pathology images. Recent
studies demonstrate that increasing the training data set and model size
and integrating domain-specific image processing techniques can signifi-
cantly enhance the model’s performance on downstream tasks. Building
on these insights, our work incorporates several recent modifications to
the standard DINOv2 framework from the literature to optimize the
training of pathology FMs. We also apply a post-training procedure for
fine-tuning models on higher-resolution images to further enrich the in-
formation encoded in the embeddings. We present three novel pathology
FMs trained on up to two orders of magnitude fewer WSIs than those
used to train other state-of-the-art FMs while demonstrating a com-
parable or superior performance on downstream tasks. Even the model
trained on TCGA alone (12k WSIs) outperforms most existing FMs and,
on average, matches Virchow2, the second-best FM published to date.
This suggests that there remains a significant potential for further im-
proving the models and algorithms used to train pathology FMs to take
full advantage of the vast data collections.

Keywords: Foundation models · Computational pathology · Whole Slide
Images.

1 Introduction

Recently, there has been an increased interest in developing vision foundation
models for various types of images, including medical imaging data. These FMs
generate informative representations that can be used in various downstream
tasks such as classification, segmentation, object detection, etc. In particular, the
development of foundation models for computational histopathology, commonly
referred to in the literature as pathology FMs, has rapidly accelerated [19].

This progress has been primarily driven by the ever-increasing amount of
unlabeled Whole Slide Image (WSI) data available in public and proprietary
sources, the development of more complex model architectures (e.g., ViT [10]),
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and the steady refinement of training workflows (e.g., DINOv2 [20]). Most cur-
rent state-of-the-art pathology FMs are based on either the DINO[9] or DI-
NOv22 [20]) self-supervised learning (SSL) algorithms. DINOv2 was developed
as an extension of DINO [8] and iBOT[31] to train general-purpose vision FMs
that capture both the global context and local structure of the images, using
Vision Transformers (ViTs) [10] as an underlying image encoder.

One of the recent milestones in the development of pathology FMs was
UNI [9], a ViT-L16 model trained with DINOv2 on over 100k WSIs from var-
ious sources, where the authors set a new standard in the performance of a
pathology FM and conducted numerous experiments evaluating it on diverse
downstream tasks. Very recently, the same group released a successor model
UNI-2 [17] trained on over 200M tiles sampled from over 350k diverse H&E and
IHC WSIs. In Kaiko-FM [1], the authors trained relatively performant models
solely on TCGA and introduced online patching, an efficient technique for sam-
pling WSI tiles of arbitrary size directly during training to reduce the space
overhead. H-optimus-0 [22] is a ViT-g14 trained with DINOv2 on 500k WSIs
with several hundreds of millions of tiles. Their model is one of the largest in
terms of the number of parameters and remains one of the best-performing pub-
lished models according to various benchmarks. Another prominent model is
Virchow2 [32], which is a ViT-H14 trained on a substantially larger data set
comprising 3.1M WSIs. In Hibou [18], the authors trained a family of FMs with
936,441 H&E, 202,464 non-H&E, and 2,676 cytology slides sourced from 306,400
unique cases. Very recently, Atlas [2] was released as a preprint, where the au-
thors trained a new pathology FM and demonstrated outstanding performance
on the HEST [14] benchmark and six out of eight downstream tasks from eva [15].
However, without released weights, external evaluation of that model appears
impossible.

Training pathology FMs at large scale [32,30,22,18,9,1,18,2] have pushed the
frontier by amassing tens of thousands to millions of WSIs. However, the ten-
dency towards scaling leaves a critical open question: is it crucial to have such a
large data set in order to train a pathology FM at the state-of-the-art level, or
can similar results be achieved with far fewer WSIs?

In this work, we address the question posed above and present three novel
pathology FMs trained on relatively small publicly available data sets and a
proprietary set of over 80k WSIs from the Netherlands Cancer Institute (NKI).
Despite being trained on orders of magnitude fewer WSIs than most other state-
of-the-art models published to date, our models achieve comparable and of-
ten higher performance on most downstream tasks. The shared models and the
source code and data necessary to reproduce the evaluation experiments are
available at https://github.com/kaiko-ai/midnight.

2 Methods

Training data We trained our FMs and performed an ablation study on three
public and one proprietary data set: 1) TCGA contains 12k FFPE slides from

https://github.com/kaiko-ai/midnight
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32 cancer types collected in different hospitals by the TCGA Research Network:
https://www.cancer.gov/tcga. 2) GTEx contains 25k WSIs across 23 tissue
types from 838 donor individuals, collected by the Genotype-Tissue Expression
project [25]. 3) CPTAC contains 7.2k WSIs from clinical tumor samples from
13 cohorts collected by the Clinical Proteomic Tumor Analysis Consortium [11].
4) In addition to those three open-access data sets, we use a proprietary set of
80k WSIs (NKI-80k) from 10,141 patients and 31 organs from the Netherlands
Cancer Institute and have magnifications of 0.25 and 0.5 µm/px, most of them
being at 0.25 µm/px. In our experiments, we found that including GTEx and
CPTAC slides in training did not bring substantial improvements (see Results).
Thus, we trained our final FMs only on the TCGA FFPE and NKI-80k slides.

Extraction of training tiles We trained our FMs on tiles of size 256×256
cropped from the original WSIs at magnifications of 2, 1, 0.5, and 0.25 µm/px.
All tiles were sampled uniformly at random from arbitrary positions of the WSIs
with online patching [1], with the foreground area threshold set to 40%. Further,
to filter out low-informative tiles (e.g., those with mainly adipose tissue), we
apply a filter in the HSV color space from [32]. More precisely, a tile is only
accepted if ≥60% of its pixels have their hue, saturation, and value in ranges
[90, 180], [8, 255], and [103, 255], respectively. For all cropped tiles, we apply
color augmentations in the Hematoxylin-Eosin-DAB (HED) space [24]. These
augmentations effectively increase the diversity of the training data and help
make the FM more robust to various staining methods used in the WSIs.

Self-supervised training with DINOv2 We use the DINOv2 self-distillation
framework to train ViT-g14 models with 1.1B parameters (and ViT-B14 with
86M parameters in the ablation experiments) with self-supervised learning. Our
algorithm is based on the original DINOv2 algorithm [20] with several modifi-
cations. First, as suggested in [32], we use a more stable KDE regularizer [28]
instead of the original KoLeo loss to ensure the diversity of tile embeddings gen-
erated by the FM. We start from the checkpoints pre-trained in [20] and train
on 32 Nvidia-H100 GPUs with 80 GB memory for 1M iterations with the base
learning rate of 3.5 × 10−4 and the learning schedules compressed accordingly,
with the batch size of 12 per GPU. (In total, it extracts throughout the training
384×106 tiles from the WSIs.) We accumulate gradients over every two training
steps, resulting in an effective total batch size of 768.

High-resolution post-training As in [20], after training, we optionally further
fine-tune the FM on larger images for 120k iterations to improve its performance,
especially on high-resolution images. Similar to reducing the patch size in the
underlying ViT studied in [5], this technique effectively increases the number of
patch tokens generated from every image. It also allows starting from an FM
pre-trained at standard resolution, thereby shortening the training time on large
images. More precisely, for this post-training, we increase the size of training

https://www.cancer.gov/tcga
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Fig. 1. Schematic representation of the FM evaluation. Panel A: Evaluation of a ViT
FM at standard and high resolution. For high resolution, larger tiles of size 392×392
are cropped into (392/14)2 = 784 patches of the same size 14×14 pixels. (The grids
are shown schematically for simplicity. The actual numbers of patches the tiles are
cropped into are 256 and 784 instead of 42 and 72, as shown in the graph.) Panel B:
Aggregating token embeddings produced by the ViT into the final CLS+Mean token
embedding.

tiles from 256 to 512 pixels, and accordingly reduce the magnification by 2-fold,
to 1, 0.5, 0.25, and 0.125 µm/px, to preserve the actual size of the tile regions
(512, 256, 128, and 64 µm). In addition to increasing the resolution, we also
scale up the parameters of the DINO transform from 98 and 224 to 168 and 392
for the local and global crop views, respectively. Since the use of larger images
increases the memory requirements, we reduce the batch size to 6 per GPU and
train on 48 GPUs with accumulating gradients over every four training steps,
resulting in the effective total batch size of 1152. The base learning rate in this
stage is reduced to 10−4. Consequently, at inference time, each input image is
resized to 392×392 before passing it to the FM for the embedding generation
(see Fig. 1A). Note that this resizing does not change the actual region of the
WSI contained in the tile. To the best of our knowledge, we are the first to apply
this high-resolution fine-tuning procedure for training pathology FMs.

Training three new FMs We trained three new FMs: 1) We trained our first
FM on the 12k TCGA WSIs alone, with the training methodology described
above. We refer to this model as Midnight-12k. 2) For our second model, we
applied the same training algorithm on both TCGA and NKI-80k combined.
(Each batch was sampled from TCGA or NKI-80k at random with equal proba-
bilities.) We refer to this model as Midnight-92k. 3) Finally, we fine-tuned the
Midnight-92k FM with the high-resolution post-training technique described
above, with reduced training schedules, for 120k more iterations. We refer to this
model as Midnight-92k/392.

Evaluation methodology We used two open-source benchmarks: eva [15] and
HEST [13]. The original data sets from which the downstream tasks were derived
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are summarized in Table 1. eva includes various tile- and slide-level classification
tasks and two tile segmentation tasks. For all tasks in eva, the original tiles are
resized to the desired dimensions before passing them to the FMs for embedding
generation (e.g., cropping the center squares from the original 700×460 tiles at
1.995 µm/px in BreaKHis and resizing them to 224×224 results in tiles of size
224×224 at 0.97 µm/px). For all tasks except Camelyon16 and Panda, we also
disabled early-stopping in eva’s protocol to ensure that all runs fully converge.

The HEST benchmark includes nine tile-level tasks that evaluate how well
the FM can predict gene expression from histology images. Each task is a regres-
sion of the FM’s embeddings of the 224×224 tiles at 0.5 µm/px to normalized
transcript counts of the top 50 highly variable genes at the respective positions.

3 Results and Discussion

Reaching state-of-the-art performance with less data We evaluated the
performance of our FMs and several other state-of-the-art FMs on the down-
stream tasks described above. For every model, we evaluated the CLS+Mean
token embeddings, i.e., the concatenation of the CLS token and the mean of
all (image_size/patch_size)2 patch tokens in the ViT (see Fig. 1B). For HEST,
we only report the aggregate average of Pearson correlations. It can be seen
(Table 2) that even our model Midnight-12k trained on just 12k WSIs is supe-
rior to most other existing FMs, and is only marginally different from Virchow2
despite being trained on 258× fewer WSIs (12k vs. 3.1M).

Midnight-92k trained on the TCGA and NKI-80k WSIs (92k WSIs in total)
slightly surpasses Virchow2, and is just 0.009 behind UNI-2 (see Table 2) despite
being trained on 4× fewer WSIs (92k vs. 350k). Despite UNI-2 having used
significantly more data for training, our models demonstrate a comparable and
sometimes superior performance on the considered downstream tasks.

Table 1. Data used in the evaluated downstream tasks. All tiles in all tasks are resized
to 224×224 (or other required dimensions) before computing embeddings. (*) For slide-
level tasks, ‘Tile size’ and ‘Magnification’ represent the tiles cropped from the original
WSIs before resizing them to the target dimensions.

Task name # images Tile size Magnification Organ Metric
BACH [21] 400 1536x2048 0.42 µm/px (20x) Breast Bal. acc.
BRACS [6] 4,539 variable 0.25 µm/px (40x) Breast Bal. acc.
BreaKHis [23] 7,909 700x460 1.995 µm/px (40x) Breast Bal. acc.
CRC-100K [16] 107,180 224x224 0.5 µm/px (20x) Colorectal Bal. acc.
Gleason TMA [3] 21,496 750x750 0.23 µm/px (40x) Prostate Bal. acc.
MHIST [29] 3,152 224x224 1.25 µm/px (8x) Colorectal Bal. acc.
PatchCamelyon [26] 327,680 96x96 1 µm/px (10x) Breast Bal. acc.
Camelyon16* [4] 399 WSIs 224x224 0.25 µm/px (40x) Breast Bal. acc.
Panda* [7] 1909 WSIs 448x448 0.25 µm/px (40x) Prostate Bal. acc.
CoNSeP [12] 41 1000x1000 0.25 µm/px (40x) Colorectal Dice score
MoNuSAC [27] 294 variable 0.25 µm/px (40x) Various Dice score
HEST (all) [14] 236,495 224x224 0.5 µm/px (20x) Various Pearson ρ
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Table 2. Performance metrics for all evaluated FMs. We report balanced accuracy for
the classification tasks, dice score (no background) for semantic segmentation (cnsp,
mnsc), and the average Pearson correlation for the nine HEST regression tasks. All
classification tasks use CLS+Mean token embeddings.

Model name #WSIs pc10 bach brcs bkhs crc glsn mhst pc c16 pnd cnsp mnsc HEST Avg.
Midnight-92k/392 92k .900 .904 .646 .802 .966 .807 .828 .951 .868 .651 .662 .708 .415 .778
UNI-2 350k .885 .924 .651 .863 .970 .777 .829 .951 .873 .666 .626 .644 .431 .776
Midnight-92k 92k .882 .889 .615 .793 .967 .823 .831 .948 .872 .643 .629 .656 .425 .767
Virchow2 3.1M .835 .890 .633 .818 .966 .791 .865 .938 .860 .646 .640 .674 .403 .766
Midnight-12k 12k .803 .907 .639 .840 .967 .790 .815 .931 .869 .656 .625 .664 .412 .763
Kaiko-B8 29k .799 .876 .641 .842 .960 .761 .830 .920 .836 .650 .644 .686 .391 .757
tcga-100M 12k .789 .873 .619 .814 .968 .798 .808 .928 .870 .675 .622 .656 .415 .757
H-Optimus-0 500k .831 .752 .620 .813 .962 .769 .850 .943 .847 .672 .644 .687 .425 .755
Prov_GigaPath 171k .853 .794 .626 .846 .959 .727 .831 .944 .812 .657 .628 .688 .405 .752
Hibou-L 1.1M .825 .792 .643 .767 .954 .766 .850 .949 .852 .654 .646 .668 .397 .751
UNI 100k .833 .797 .613 .808 .954 .759 .841 .937 .854 .662 .627 .662 .391 .749
vitg14 (nat. img.) 0 .721 .724 .578 .783 .943 .740 .855 .881 .500 .509 .565 .614 .351 .674
vitg14 (initial) 0 .652 .474 .413 .425 .754 .459 .578 .763 .526 .304 .462 .432 .166 .493

Finally, our post-trained model Midnight-92k/392 demonstrated a supe-
rior average accuracy to all other models in the benchmark and surpassed UNI-
2 with an average margin of 0.002. For this evaluation, all the images were
resized from their original size specified in Table 1 to 392×392, instead of re-
sizing them to 224×224 as for all other models. The results (Table 2) indicate
that the high-resolution post-training improved the base Midnight-92k model
especially significantly on the segmentation metrics, CoNSeP and MoNuSAC.
Notably, on the pc10 task, which is derived from PatchCamelyon (pc) by re-
ducing the training set to just ten random tiles per class (20 in total) for every
evaluation run and averaging the test accuracy over 50 training runs, this model
achieves the balanced accuracy of 0.90 and surpasses all other evaluated models.
However, the performance on the Camelyon16 and HEST tasks has significantly
degraded, which needs further investigation. Overall, this still resulted in the
absolute best-performing model among all the evaluated models.

To ensure a fair comparison, we additionally evaluated UNI [9] on all down-
stream tasks with resized images. (In [9], they mention a fine-tuning procedure
performed with larger 512×512 images but without the details.) However, the
performance of UNI only degraded on images resized to 512×512 (e.g., 0.89 on
PCam), which suggests that their fine-tuning procedure was of a different nature
than ours. We also evaluated UNI-2 in the same way as Midnight-92k/392, on
392×392 images. However, that also yielded a lower performance (the average
score has dropped from .776 to .771).

Notably, all evaluated pathology FMs surpass the baseline ViT-g14 model
trained on natural images (‘vitg14 (nat. img.)’ in Table 2) with a large margin,
which highlights the importance of developing domain-specific pathology FMs.
However, all pathology FMs in our benchmark perform relatively poorly on
MHIST, where the baseline model trained on natural images is the second-best
model. This suggests that there remains a potential for improvement.
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Table 3. Performance of the models in the ablation study. Each row corresponds to a
single ViT-B14 model trained with the modifications specified by check marks.

TCGA NKI-80k CPTAC GTEx HSV KDE HED eva HEST
0.704 0.367
0.754 0.367
0.753 0.376
0.759 0.374
0.744 0.380
0.750 0.363
0.742 0.368
0.742 0.375
0.750 0.368
0.765 0.373
0.768 0.375

Ablation experiments To measure the effect of the adaptations we made to
the baseline training workflow, we performed an ablation study, where we trained
several smaller ViT-B14 models (Table 3). These training runs were done for 500k
iterations with 4 GPUs, a batch size of 64 per GPU, and accumulating gradients
over every three training steps, resulting in an effective total batch size of 768.
The first four experiments evaluated the importance of the HSV filter, the KDE
regularizer, and the HED augmentations. Without replacing the default KoLeo
regularizer with KDE and without the HSV filter, our training did not converge.
After adding the HSV filter, the training converged to an average accuracy of
0.704 on eva, which was still far from 0.753, obtained with the final config. The
HED color augmentations improved the performance on HEST but did not have
a large effect on eva. However, we applied it anyway to help make the FMs more
robust to different stainings.

Next, we added each of NKI-80k, CPTAC, and GTEx, to evaluate their
contribution when added to TCGA. (The tiles were sampled from both data
sets with equal probability.) The results (rows 5, 6, and 7 in Table 3) show that
all three had a rather small impact, with NKI-80k bringing the highest average
gain in accuracy. We also ran data ablations relative to the baseline run on
all four data sets: TCGA, GTEx, CPTAC, and NKI-80k (the five last rows of
Table 3). Here, we excluded each data set at a time and trained a ViT-B14 on the
remaining three data sets. The results show that removing GTEx and CPTAC
only marginally affected the FM’s final performance, while removing TCGA and
NKI-80k resulted in a higher loss.

Last, to check whether we could get an FM with a comparable performance to
that of Midnight-12k even with less data, we trained the large ViT-g14 model
on just 10% of the TCGA slides (∼1k WSIs). The resulting performance was far
lower, e.g., only 0.9 on PCAM after 500k iterations. We also trained ViT-g14
on 100M distinct tiles randomly sampled from all the 12k TCGA slides, which
resulted in a slightly lower performance than that of Midnight-12k, with the
avg. score of .757 instead of .763.



8 Karasikov et al.

ViT-g/14 GT Lunit Virchow2 Midnight-92k/392Midnight-12k
Lunit Virchow2 Midnight-12k Ground truth

Fig. 2. Left: Examples of segmentation performed with different FMs on two tiles
from the CoNSeP data set: ViT-g14 (natural images), Lunit, Virchow2, and our mod-
els Midnight-12k and Midnight-92k/392. Ground truth is shown on the left side —
green: inflammatory, blue: epithelial, yellow: spindle-shaped nuclei. Right: Tile predic-
tions for Lunit, Virchow2, and Midnight-12k and ground truth annotations for slide
test_040 from Camelyon16.

Image segmentation Identifying different cell types can be essential not only
for making an accurate diagnosis but also for understanding tumor behavior
by analyzing the cellular composition of the micro-environment. In addition to
systematically evaluating the FMs’ capability to segment and classify cells in
images on the CoNSeP and MoNuSAC tasks (evaluated in eva), here, we selected
two images from the CoNSeP data set for a clear visual demonstration and
performed the standard semantic segmentation procedure implemented in eva
for four models: ViT-g14 (natural images), Lunit, Virchow2, and our models
Midnight-12k and Midnight-92k/392.

All pathology FMs produce segmentations (Fig 2) that are noticeably bet-
ter than the baseline model, which again highlights the importance of training
the FMs on pathology images. Notably, our models produce segmentations that
are comparable in quality to those from Virchow2, despite being trained on
34–258×fewer WSIs (12–92k vs. 3.1M).

Tile-level classification with FM for slide-level segmentation Metastasis
to regional lymph nodes is an early sign of malignant spread. Thus, detecting
lymph node metastasis is crucial in many cancer types, as it upstages the disease
and impacts both clinical outcomes and treatment strategies. To demonstrate
how tile-level pathology FMs perform on slide-level tasks, we trained tile-level
downstream classifiers to detect lymph node metastases in breast cancer on the
Camelyon16 data with three different FMs: Lunit, Virchow2, and Midnight-
12k. We applied these classifiers on a randomly picked slide test_040 (Fig. 2).
It can be seen that the predictions for Midnight-12k and Virchow2 are nearly
identical and close to the expert annotations. At the same time, the weaker FM
Lunit generates far less accurate predictions, which clearly shows the practical
importance of using higher-performing FMs to get qualitatively better results
on downstream tasks.
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4 Conclusion

We have presented three new pathology FMs trained on up to two orders of
magnitude fewer WSIs than some state-of-the-art models, yet achieving compa-
rable or superior performance on downstream tasks. We have shown that even
with a relatively basic setup, it is possible to train a high-performing pathology
FM with far fewer WSIs than one may have previously thought necessary. We
make our Midnight-12k model trained solely on TCGA open for download
from https://huggingface.co/kaiko-ai/midnight under the MIT license to
encourage further research and reproducibility.
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