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Abstract. We propose a graph information compression framework,
called Behavior-Informed Subgroup-consistent Connectome Template
(BISCoT), that learns interpretable functional subnetworks from resting-
state IMRI (rs-fMRI) connectivity, which simultaneously capture the het-
erogeneity of a diverse patient cohort. BISCoT uses multidimensional
behavioral profiles to guide the decomposition of a rs-fMRI connectiv-
ity matrices into sparse yet representative subnetworks that are consis-
tent within behavioral sub-groups. In particular, our framework adopts
a graph convolution network to capture local connectivity features and
applies a subgroup-informed pooling process to extract the final subnet-
works. We evaluate BISCoT on an in-house dataset of individuals with
autism spectrum disorder and demonstrate that the learned subnetworks
improve the performance of multiple downstream prediction tasks. In ad-
dition, BISCoT extracts consistent connectivity "templates" at the sub-
group level, which allows for interpretable biomarker identification ©.

Keywords: Resting-state fMRI - Multimodal Fusion - Graph Neural
Networks - Neurobehavioral Signature - Adaptive Connectomics

1 Introduction

Resting-state functional MRI (rs-fMRI) is a non-invasive imaging modality that
captures steady-state patterns of co-activation in the brain. Mathematically,
these connectivity patterns can be represented as functional brain networks,

% Code available at https://github.com /zijianch /biscot.



2 7. Chen et al.

where each node corresponds to a region of interest (ROI) and the edges repre-
sent the correlation between them. Alterations in the network organization have
been associated with various psychiatric disorders like autism spectrum disorder
(ASD) [27] and schizophrenia [17]. Consequently, rs-fMRI begins to be utilized
experimentally for diagnostic and prognostic evaluations and in providing a more
nuanced picture of behavioral subtypes that exist within a patient cohort.

Robust detection of network alterations in rs-fMRI connectivity remains an
open challenge due to high data dimensionality and the subtle but distributed
changes associated with many psychiatric disorders. Traditional rs-fMRI stud-
ies have focused on statistical approaches for group-wise comparison [28]. More
recently, the focus has shifted to predictive analytics, with machine learning
being a natural tool to mine complex relationships in the rs-fMRI data for
case/control prediction [22,26]. Going one step further, graph neural networks
(GNNs) have been proposed as an end-to-end way to directly model the brain
networks. Specifically, the feature updates in GNNs are restricted by the un-
derlying graph structure [11], thus preserving its inherent topology. GNNs have
been widely applied to the study of brain disorders. For example, the work of [4]
proposed a structurally-regularized edge convolution to predict the behavioral
scores of ASD patients, while the work of [32] included both 1-hop and 2-hop
neighboring information for ADHD prediction. More recent works include the
early diagnosis of Alzheimer’s disease [31] and the post-stroke aphasia [1].

While these GNNs demonstrate high classification accuracies, they are diffi-
cult to interpret, as most conclusions are derived from the network convolutional
weights or the intermediate feature maps, both of which can be noisy and lack
robustness. A straightforward solution is to sparsify the full graph to retain only
the most salient structures. Common techniques in this vein include traditional
pooling [9, 15, 3] and sparse attention,/regularization mechanisms [30, 16]. While
these methods improve interpretability, they do not naturally account for the
heterogeneous phenotypes often present in patient cohorts. As a workaround,
recent studies have introduced feature-attentive GNNs [19,5] to integrate be-
havioral and demographic information to the graph analysis. While seminal, the
learned subnetworks are highly inconsistent across subjects.

In this paper we propose a novel graph information compression framework,
Behavior-Informed Subgroup-consistent Connectome Template (BISCoT), that
uses multidimensional behavioral data to enforce subgroup comnsistency in its
learned sparse representation. Specifically, we use a convolution module to ag-
gregate information from neighboring nodes in the brain network. Based on these
learned features, we propose a subgroup-informed pooling mechanism that uses
the embeddings of each subject’s behavioral profile to guide the selection of edges
and nodes in a way that remains consistent within each subgroup. As a result,
our method preserves subject-specific information while identifying consistent
sub-networks aligned with distinct behavioral phenotypes. Using an in-house
dataset, we demonstrate that our framework both preserves the network infor-
mation in the original rs-fMRI data and learns a generalized and interpretable
representation that outperforms baseline models in multiple downstream tasks.
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Fig. 1. Schematic of the proposed framework. Top Left: Computation of correlation
matrix from the fMRI BOLD signal. Top Right: Behavioral profile embedding. Bot-
tom: (Behavioral) Subgroup-informed template learning.

2 Learning a Subgroup-Informed Connectivity Template

Our proposed BISCoT framework (Fig. 1) takes as input the rs-fMRI connec-
tivity matrix and behavioral profile. Formally, let N be the number of ROIs in
the common brain parcellation, and M be the number of subjects in the cohort.
XSS) € RV*N ig the rs-fMRI connectivity matrix for subject m, and p,, € RP*!
is the corresponding behavioral profile. The profiles define subgroups of sub-
jects based on specific characteristics, for example, sensory processing in ASD
or symptom severity in schizophrenia. The output of BISCoT is a sparse rep-
resentation X,,, € RV*V for each Xﬁg) that is both consistent within the same
behavioral subgroup and can be used for multiple downstream predictive tasks.

2.1 The BISCoT Framework

Profile Embedding: We first map the behavioral profiles p,, into a low-
dimensional embedding z,, € R%*!. Since p,, can be derived from clinical,
observational, and survey data with both continuous and categorical values, we
use the embedding z,, to guide the rs-fMRI analysis. As seen in Fig. 1, we use
an autoencoder to construct the profile embeddings. The encoder maps p,, to
Zm, while a decoder reconstructs p!,, from z,,. We train the autoencoder using a
combination of two loss terms. The first term minimizes the reconstruction gap:

1 M
2
Edec = M Z Hpm - p/m” . (1)

m=1

The second term encourages the latent embeddings of subjects from different
behavioral subgroups to be different via a supervised contrastive loss [13]:
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where 7 is the temperature parameter. Minimizing Ly, equivalently minimizes
the intra-subgroup distance while maximizing the inter-subgroup distance.

Graph Convolution: We use the graph invariant network (GIN) model [29] to
map the edge-wise rs-fMRI connectivity matrix onto node embeddings:

X =MLP | (1440) X S o
JEN*(7)

Here, Xl(-,e) is the feature vector of node i at layer ¢, the set N*(i) denotes the
neighboring nodes of ¢ defined by rs-fMRI connectivity > 0.6, and € is a learned
parameter. For notational simplicity, we have dropped the subject index m.

Subgroup-Informed Pooling: BISCoT uses two types of pooling to learn
behaviorally-informed connectivity templates. The first is node pooling, which
identifies and preserves an informative set of brain ROIs. The second is edge
pooling, which sparsifies the subgraph created from just the selected nodes.
The first step of node pooling is to learn an "importance score" f; for each
node (i.e., brain ROI) 7 that is informed by the subject profile embeddings z:

£(X{" | 2) = g(w(z) X" +b), (4)

where XE—.L) € R4*! is the output of the last GIN layer in Eq. (3), ¢(-) is a
sigmoid activation function to ensure f; € [0,1], and b is a learnable bias.

We constrain the learnable weights w(-) € R%*! in Eq. (4) to be a parame-
terized function of the profile embedding z via the two-layer MLP as follows:

W(Z) = 92 . SOftmaX(le + bl) + b27 (5)

where ©; € R€*4 @, € R *C are learnable parameters shared across all nodes
and subjects, and by, bs are the bias terms. Notice that Softmax(©1z+ b;) acts
as the mixing probability of belonging to each behavioral subgroup. As a result,
subjects with similar profiles receive similar weights and therefore similar scores.
The scores f; are sorted in descending order with the top-k nodes selected as the
most important. For stability, we apply a dynamic dropout to the removed nodes
by randomly retaining them with a probability derived from how frequently each
one is kept for other subjects in the same behavioral subgroup.

These selected node features X;. are then passed into a node-to-edge trans-
formation block to generate a feature vector X;; € R%*! for each edge (i, )
based on its two endpoints. Formally, this is done by concatenating [X;., Xj~]—r
and passing this new vector through an MLP with learnable weights.

The edge pooling operation follows the same sequence of steps as node pooling
and is summarized briefly. The profile-guided importance score for edge (i, 5) is
computed as Fij(f(ij | z) = (b(vT/(z)Tiij +b), with the learnable weight vector
Ww(z) = O, - Softmax(6z + Bl) + b,. In addition to the top-k edge selection
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and dynamic dropouts, we redistribute the information from the removed edges
(i,7) to the retained ones (u,v) using an attention mechanism, defined as

~ < ~(p

X;v = FUUX?(L) + aXEj)7 (6)

v

where the attention score « is computed as follows:

a = Softmax <(WQgij) (WKguU)T> Wy. (7)

Vd

Here, Wg, Wk, and Wy are learnable parameters, and the inputs g;; and gy,
capture geometric information about the edges (4,7) and (u,v), respectively,

Loss Functions: Similar to the profile embeddings, we minimize a combination
of two loss terms. The first term is a reconstruction loss that guarantees a suf-
ficient amount of information is retained in the template X;;. It is computed as
the geodesic distance on the manifold of symmetric positive-definite matrices:

1 & - -
Lrecon = 37 S lOgm(X*l/QX(O)X*1/2)||i” (8)

m=1

where X is produced by a small reconstruction head, implemented as two convo-
lution layers, on top of the learned representation X;;. The second term strength-
ens the subgroup separation introduced by the profile embedding, defined as the
cross-entropy between the predicted subgroup 9, . and the ground truth:

1 M C
£sep = M Z Zym,c IOg(gm,c)- (9>

m=1c=1

Taken together, the overall loss for training the connectivity portion of BISCoT
is the sum of Egs. (8)-(9): £ = Lsep + A1 Lrecon, Where A; is a hyperparameter.

2.2 Implementation Details

Optimization: We separately train the profile embeddings and the rs-fMRI
connectivity template. The profile embedding module is trained by minimizing
Laec + Lse as defined in Eq. (1) and Eq. (2). It is then frozen during the template
learning. The dimension of the profile embedding is set to d. = 16, the tempera-
ture to 7 = 0.2, and the hidden dimensions for the AutoEncoder to 128, 64. For
the rs-fMRI module, the dimension of the node convolution is 16. The pooling
ratio and maximum dropout rate are set to a commonly used value of 0.5 and
are not tuned based on performance. The reconstruction layer for Eq. (8) is a
convolution with 64 hidden channels, and the classification layer for Eq. (9) in-
cludes a global average and max pooling layer followed by an MLP with a hidden
dimension of 32. The reconstruction head consists of a convolution layer with 64
hidden channels. We set the hyperparameter \; to 0.03 to balance the scales of
the two losses.
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The model is trained using Adam with a learning rate of 10~2 decayed by
a factor of 0.95 every 10 epochs, and a batch size of 8. Additionally, a weight
decay of 10~3 and early stopping is applied to prevent overfitting.

Evaluation Strategy: We benchmark the learned template X from BISCoT
against ablation models that use different convolution operations (GIN [29],
GraphSAGE [12]) and pooling methods (TopK [9], SAGPool [15], EdgePool [3]).
We quantify performance via the geodesic and Frobenius distances between the
input and learned connectivity matrices, the subgroup separation accuracy, and
the difference in the largest eigenvalues of the original and learned matrices.

We also evaluate the utility of the learned template X on multiple down-
stream predictive tasks (see Section 3 for details). The downstream tasks oper-
ate on the same splits and take the learned subgraph X as input. It includes a
global average pooling layer followed by an MLP with hidden dimensions of 64
and 32. This multistage procedure isolates the subgraph information from any
task-specific tuning to demonstrate generalizability. Beyond the above ablation
models, we compare BISCoT with three recent end-to-end models for brain net-
work analysis (BrainGNN [4], MGCN [32], BPI-GNN [33]) that directly map the
connectivity input X(©) to the predictive output.

3 Experiments

3.1 Dataset and Input Construction

Our in-house dataset contains 105 participants diagnosed with ASD (58 female;
age = 14.21 £ 2.06 years). FMRI data were acquired using either a Siemens 3T
Trio scanner with a 12-channel head coil or a Siemens 3T Prisma scanner with a
20-channel head coil. The data were preprocessed using the standard fMRIprep
pipeline [6] and are used to compute the connectivity matrix ng), with ROIs
defined according to the Brainnetome parcellation (N = 246) [8]. The geometric
information g;; € R? in (7) is the midpoint coordinate of the end-nodes i and j.

The behavioral profiles p,, € R are the responses of the Sensory Profile 2
for Adolescents and Adults [2]. It queries a broad spectrum of sensory-related
behaviors and are essential for demonstrating the utility of our method. This
questionnaire consists of 60 statements that probe different sensory experiences.
These responses are grouped into six sensory-type sub-scores (auditory, taste,
etc.; range: 0-50 each) and four sensory-pattern sub-scores (low registration,
sensory avoiding, etc.). We focus on the "Low Registration" experience, where
higher scores indicate reduced perception and response to sensory input. Using
this sub-score, we define three behavioral subgroups (high/normal/low registra-
tion) for Eq. (2) and Eq. (9).

We consider three downstream prediction tasks. The first task is to predict
the vector of six sub-scores for the different sensory types. The second task
is to predict the Autism Diagnostic Observation Schedule (ADOS) cumulative
score for each patient (range: 0-30) [20]. The third task is to predict the Social
Responsiveness Scale (SRS) total score (range: 0-100) [20].
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Model ‘ Geodesic | ‘ Frobenius | ‘Separation T‘)\l Deviation |

BISCoT 112.48+9.28(65.55+4.04 | 0.77+0.12 | 0.35+0.07
GIN-+TopK 181.09 4+ 2.97*| 65.64 + 4.62 |0.59 £+ 0.07*| 0.37 +0.09
GIN+SAGPool [180.55 & 0.98*|67.94 + 5.79*0.60 + 0.11* | 0.42 + 0.13*
GIN-+EdgePool |179.51 + 2.22*%|79.16 + 3.13%|0.56 + 0.10*| 0.61 4+ 0.07*
GraphSAGE+TopK|[179.12 + 1.64*| 66.89 + 4.66 [0.52 + 0.14* | 0.41 + 0.10%*
Table 1. Reconstruction performances of BISCoT and baseline models. Evaluation
metrics are geodesic distance (Eq. (8)), Frobenious distance, subgroup separation ac-
curacy, and percentage deviation of the largest eigenvalue. The asterisk * indicates
statistically worse performance (p < 0.05) when compared with BISCoT.

3.2 Experimental Results

Reconstruction Performance: Table 1 compares the reconstruction perfor-
mance of BISCoT against four ablation baselines using a repeated 5-fold cross
validation setup. We have reported the test set metrics to avoid information leak-
age during training. As seen, BISCoT achieves uniformly better performance,
almost all of which is statistically significant. Notably, our model significantly
reduces the geodesic distance between the input and template connectivity ma-
trices. This trend indicates that our model is more effective at capturing the
intrinsic structure of the network. The lower deviation of the largest eigenvalue,
which is related to network topology, further supports this conclusion.

Downstream Prediction Tasks: We use the same cross validation setup to
demonstrate how the learned representations support downstream prediction
tasks. Namely, within each fold, the learned representations X from the training
data are used as input to train a small predictor network. We then apply both
BISCoT and the downstream predictor to the testing data to evaluate perfor-
mance. This ensures no information leakage between training and testing data.
Table 2 compares the performance of BISCoT and baseline models across
three prediction tasks (1) sensory category, (2) ADOS, and (3) SRS. As ex-
pected, our our model shows a significant improvement in sensory category score
prediction, as the embeddings are constructed from sensory behavioral profiles.
However, the ADOS and SRS evaluations focus on different behavioral traits are
provide a fair comparison across all methods. Even so, BISCoT outperforms the
baseline models by achieving lower and more stable metric values. Overall, these
results demonstrate that our model not only reconstructs brain networks more
reliably but also retains more informative features for downstream tasks.

Qualitative Interpretation of the Learned Templates: We compute sub-
group specific templates by aggregating ROIs and edges that are retained by
node and edge pooling, respectively, in at least 85% of the sub-group patients.
In contrast, standard pooling methods yield inconsistent node sets even among
"similar" subjects. These templates are illustrated in Fig. 2. As seen, the high
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Model ‘ Sensory Category ‘ ADOS ‘ SRS
| MAE | RMSE | | MAE | RMSE | | MAE | RMSE |
BISCoT 4.53+0.48 5.80+0.59 |3.584+0.83 4.77+0.69(13.43+1.29 16.19+0.92
GIN+TopK 7.154+0.82* 9.20+1.26* | 4.10+£1.08 5.38+1.43 |16.814+1.87* 20.93+2.50%*

GIN-+SAGPool 6.79+0.75% 9.00£0.82* [4.274+0.51* 5.364+0.81%(23.93+2.87* 27.78+3.01*
GIN+EdgePool | 6.9040.83*% 9.10+0.91* [4.6241.44* 5.69+£1.77%|23.474+4.94* 27.5940.93*
GraphSAGE+TopK| 6.744+0.55% 8.63+0.76* |4.72+0.47* 5.9240.59%|25.03+2.84* 28.91+2.89*

BrainGNN 6.25+0.78% 7.97+£0.99* | 3.77+£0.82 4.80+£0.97 [16.34+1.92* 20.97+1.98*
MGCN 5.1440.64* 6.54+0.79* | 4.204£0.69 5.09£0.85 | 14.01+1.54 18.244+1.81
BPI-GNN 19.1941.31% 20.714+9.21%|7.21£0.71* 8.4443.65%|18.454+4.46* 26.541+9.89*

Table 2. Downstream tasks performances of the proposed and baseline models. Eval-
uation metrics are mean absolute error (MAE) and root mean squared error (RMSE).
The asterisk * indicates statistically worse performance (p < 0.05) compared to the
best performing model in highlighted in bold.

registration subgroup consistently picks regions in frontolimbic and insular cir-
cuits, which reflect heightened emotional reactivity [7] and interoceptive aware-
ness [25]. The normal registration subgroup shows more balanced involvement of
temporal-limbic regions, such as the amygdala, hippocampus, and entorhinal cor-
tex, which indicates typical emotional and sensory responsiveness [21]. The low
registration subgroup emphasizes sensorimotor and parietal regions, while show-
ing less direct limbic or insular engagement, which suggests reduced sensitivity
to emotional and interoceptive stimuli. In terms of edge connections, all three
groups display consistent involvement of the fusiform gyrus (FuG), which pro-
cesses body representations, integrates multisensory inputs for perception, and
may support interoceptive learning [23, 10, 24]. In addition, the high registration
group exhibits a higher density of edges stemming from the inferior temporal
gyrus (ITG) and parahippocampal gyrus (PhG), which highly correlate to the
severity of autism symptoms [14], especially the repetitive behaviors [18].

4 Conclusion

We introduced BISCoT, a novel graph information compression framework to
address key challenges in analyzing resting-state fMRI connectivity for complex
and heterogeneous populations like ASD. By integrating a state-of-the-art GIN
architecture with a subgroup-informed pooling module, our approach learns a
sparse yet discriminative representation that maintains interpretability across
different behavioral characteristics. Experimental results demonstrate that our
framework not only outperforms existing GNN-based baselines in reconstruction
accuracy and predictive tasks but also provides insights into the neurobiological
signatures of distinct sensory registration patterns in ASD. Future work will
focus on extending this methodology to larger and more diverse clinical cohorts,
as well as exploring more gradated behavioral subtypes.
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