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Abstract. While artificial intelligence (AI) has revolutionized the field
of epileptic seizure detection from electroencephalography (EEG), its
clinical adoption remains limited, largely due to the lack of transparency
in AI models and their inability to explain the underlying seizure eti-
ology. This paper introduces SzXAI, a novel framework to enhance the
reasoning abilities of AI models for EEG-based seizure detection. SzXAI
employs a contrastive training mechanism, which uses cross-modality
similarity layers to align the EEG encodings with textual concept embed-
dings derived from clinical notes using LLMs. Along with the alignment,
SzXAI leverages an attention-weighted pooling mechanism to detect un-
derlying seizure and baseline etiologies. We validate SzXAI via 10-fold
cross validation on the publicly available Temple University Hospital
dataset. Our results demonstrate that the alignment-powered training
mechanism of SzXAI vastly outperforms direct etiology prediction, thus
improving the reliability of the predicted seizure etiologies. Furthermore,
structured sentence generation using the model output provided insights
in a human-readable format. Thus, SzXAI provides an effective platform
to boost clinical trust and AI usability in epilepsy management
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1 Introduction

Artificial intelligence (AI) has emerged as a powerful tool to support clini-
cal decision-making by automatically extracting information from complex and
noisy data sources [1]. However, despite their strong performance in diagnostic
tasks, AI models are not fully trusted, in large part due to their lack of trans-
parency. As a result, clinicians still bear a significant burden in identifying the
underlying disease etiology for treatment planning. Ultimately, this burden is
both subject to human biases [6] and prolongs the decision-making process [11].

The challenges of AI integration are underscored in epilepsy, in which scalp
electroencephalography (EEG) is the primary modality. Diagnosis from EEG is
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done by manually scanning hours of data for seizure patterns (e.g., spike-and-
wave complexes or high-amplitude discharges [3,22]), a process that is labor-
intensive and prone to human errors [2]. Over the past decade, AI-based methods
have demonstrated a clear ability to detect the presence or absence of seizure
activity in EEG data. Notable models include EEGNet [15,23], CNN-BLSTM [8],
TGCN [7], and DeepSOZ [16], all of which implicitly capture spatio-temporal
correlations in EEG data associated with seizure activity. However, the model
outputs are limited to binary predictions of seizure versus baseline activity, and
in some cases a categorical prediction of the seizure onset location [5,9,16]. These
categorical predictions do not offer insight into the specific characteristics of the
EEG data that indicate a seizure, also known as its etiology, which is crucial to
bridging the gap between categorical prediction and diagnostic reasoning.

Large language models (LLMs) offer a compelling strategy to bridge this gap.
For example, the EEGtoText model [4] is trained to generate reports for EEG
recordings. However, this model lacks information about the timing of events,
which limits its broader clinical utility. Concept-bottleneck models have become
popular in medical image analysis [14,18,24,25] and offer a promising framework
for explaining the underlying seizure etiologies. Recent studies have shown that
concept-based explanations are preferred over other forms, such as heatmaps or
example-based interpretations [20]. However, their adoption is hindered due to
required architectural changes, limited information on temporal evolution, and
a lack of structured concept datasets. The seminal work of [12] takes a first step
in this direction by proposing EEG-GPT. This model prompts an LLM with
structured outputs from a seizure detector to generate textual summaries of
precomputed seizure predictions (e.g., onset time, duration) in EEG. While this
strategy can be integrated with seizure detection systems, it merely summarizes
the data statistics and cannot reason about the underlying seizure etiology.

This paper presents SzXAI to enhance the reasoning abilities of EEG-based
seizure detection AI models. SzXAI uses cross-modality similarity layers to align
the EEG representations with textual concept embeddings derived from clinical
notes and uses an attention-weighted pooling mechanism to detect underlying
seizure and baseline etiologies present in the EEG data. We use a supervised con-
trastive loss during training to enforce consistency between the dynamic EEG
data and the static clinical notes. This procedure allows SzXAI to align the
EEG representations with seizure and non-seizure etiologies at appropriate time
points. We evaluate SzXAI with two seizure detection models on the publicly
available Temple University Hospital (TUH) dataset. Our results demonstrate
that alignment-powered training improves performance over direct etiology pre-
diction. Reconstructed sentences from the etiologies predicted by SzXAI reveal
key patient-specific insights, thus underscoring its clinical potential.

2 Novel Model-Agnostic Etiology Prediction in EEG

This section describes the three novel elements of SzXAI: (i) integrating cross-
modality similarity layers and attention-weighted pooling into an existing seizure



Title Suppressed Due to Excessive Length 3

Fig. 1: Overall framework of SzXAI for seizure etiology prediction from EEG
using any AI-based seizure detector, similarity computation, and pooling layers
(Top Two) and the proposed LLM-driven label construction (Bottom)

detection system, (ii) a knowledge-based contrastive loss for temporal alignment
of the EEG with static clinical notes, and (iii) ground-truth etiology extraction
from clinical notes using pre-trained LLMs. Finally, an LLM is used to constuct
summaries from predicted etiologies. Our overall framework is shown in Fig. 1.

Importantly, SzXAI can be integrated into any AI-based seizure detection
framework by extracting an intermediate encoding of the EEG data. The concept
banks can also be edited as per clinical needs. Moreover, given its small size,
SzXAI can be trained efficiently without sacrificing the detection performance.

2.1 The SzXAI Framework

AI seizure detectors are designed to make a sequence of binary predictions of
baseline vs. seizure activity for each short time windows of the EEG data [19].
As part of this process, most AI models will construct a latent representation
of the EEG. Let T be the number of time windows in the recording, and let
h1:T denote the latent representations for each time window. These intermediate
variables h1:T are the key to our model-agnostic etiology prediction.

Concept Bank Generation: We construct a comprehensive concept bank of
all expected seizure and baseline etiologies present in the EEG as follows:
1. Prompt the LLaMA model [10] to generate a list of EEG patterns across

the time and frequency domains that cover both seizure-related and back-
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ground activity. Prompt tuning and reference articles were used to guide the
output [22]. Redundant phrases were eliminated to ensure distinct concepts.

2. Generate embeddings for each concept phrase using the BioWord2Vec model
[27], which has been pre-trained on biomedical reference texts.

3. Extract 20 unique concepts by removing semantically similar terms based
on their BioWord2Vec embedding space proximity.

We denote this concept bank as E := e1:N ∈ RNd , where N = 20 and Nd is
encoding dimension. E is generated once and is then fixed across all experiments.

Given the latent representations h1:T from the seizure detector and concept
bank E, SzXAI employs a neural network with three linear layers, batch normal-
ization, LeakyReLU activation to obtain the encodings h̃t = fNN (ht) ∈ RNd ,
thus bringing the EEG representations into the same space as the elements of E.

Etiology Prediction from EEG: We use the encodings h̃t to predict which
of the N concepts are present in the EEG data of a given patient via a two step
procedure. First, we compute the cosine similarity between the encoding for each
time window h̃t and the N concept vectors en to get Snt = ⟨h̃t, en⟩ = h̃tT ·en

∥h̃t∥∥en∥ .
Second, we construct an attention-weighted pooling of the similarity scores

across time, where the attention weights is derived from the prediction of seizure
activity for each time window by the original detector: p̂1:Tsz such that p̂tsz ∈ [0, 1]:

ŝn =

T∑
t=1

p̂tsz · Snt or ŝn =

T∑
t=1

(1− p̂tsz) · Snt (1)

where the left side of Eq. (1) is used for seizure concepts and the right side for
non-seizure concepts. This strategy allows the encodings for seizure time windows
to be used to predict seizure etiologies and likewise for the non-seizure time
windows and etiologies. Finally, we use a linear layer to predict the probability
of each etiology being present in the EEG data, denoted by p̂c

1:N .

2.2 Knowledge-driven Training for Etiology Prediction

SzXAI is trained using a combination of three loss terms as follows:

L = LCP + λ1LKNBC + λ2Lreg. (2)

The final term Lreg is an L2 penalty on the weights of all linear layers in SzXAI,
and λ1 and λ2 are hyper-parameters. The first two terms are described below.

Prediction Loss (LCP ): We define the task of etiology prediction as a multi-
label classification problem using a weighted binary cross entropy loss:

LCP = − 1

N

N∑
n=1

[wn · pnc log(p̂nc ) + (1− wn) · (1− pnc ) log(1− p̂nc )] (3)

where wn is the weight of the nth concept and is inversely proportional to the
frequency of occurrence in the training dataset. pnc ∈ {0, 1} is the ground truth
label. This loss guides SzXAI to detect the presence of etiologies in EEG.
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Contrastive Alignment Loss (LKNBC): The clinical notes and derived con-
cepts are static at the patient level, whereas the seizure activity captured in
EEG is dynamic over time. Thus, SzXAI must learn an unknown temporal
alignment between the sequence of latent EEG representations h̃1:T and the
concept bank E. We propose the Knowledge-Based Contrastive loss in Eq. (4) to
map temporal information to patient etiologies. This loss encourages the model
to learn discriminative features by contrasting positive pairs (e.g., embeddings
from seizure time windows with seizure-related etiologies) against negative pairs
(e.g., embeddings from seizure time windows with non-seizure-related etiologies).

LKNBC =
−1

|Tsz| × |Csz|
∑
t∈Tsz

∑
n∈Csz

log

(
exp(⟨h̃t, en⟩)∑

k∈Ensz
exp(⟨h̃t, ek⟩)

)

+
−1

|Tnsz| × |Cnsz|
∑

t∈Tnsz

∑
n∈Cnsz

log

(
exp(⟨h̃t, en⟩)∑

k∈Esz
exp(⟨h̃t, ek⟩)

)
(4)

Formally, let Tsz and Tnsz denote the set of seizure and non-seizure time
windows respectively. Similarly, let Csz and Cnsz denote the seizure and non-
seizure etiologies that are present for a given patient. In contrast, Esz and Ensz

represent the collection of seizure and non-seizure etiologies, respectively, in the
concept bank E. The first term of Eq. (4) states that the encoding h̃t for a seizure
time window should be more correlated with the present seizure concepts for
that patient than to any of the non-seizure concepts. The second term of Eq. (4)
encourages the inverse process for non-seizure time windows in EEG. At a high
level, this loss encourages SzXAI to learn nuanced temporal representations and
effectively distinguish between seizure and non-seizure etiologies.

2.3 LLM-powered Label Construction for Training and Evaluation

Inspired by [18,26], we construct labels for training and evaluation through the
automated process illustrated in the bottom pane of Fig. 1. Specifically, we first
prompt the open-source pre-trained LLaMA-8B with no further finetuning using
the query: “List present etiologies based on this clinical note describing EEG”
(and its semantic variations for stochasticity) to extract the relevant etiologies.
The extracted text is then refined to obtain key terms. We utilize BioWord2Vec
to generate embedding vectors minimally correlated with each other (Fig. 2(a)).
Next, we iteratively compute the cosine similarity between each predicted term
and every vector in our predefined concept bank, E. If the similarity exceeds
a threshold of 0.8, we classify that etiology as present for that patient in our
ground-truth labels. This results in a binary vector pc

1:N , where multiple eti-
ologies may be simultaneously present. Notably, this process is computationally
efficient, requiring only a few seconds when executed on one A100 GPU. We also
confirmed the accuracy of the algorithm by comparing generated labels with clin-
ical notes. Fig. 2(b) shows perfect recall and high specificity, with minor false
positives within related etiologies.
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Fig. 2: (a) Self-Correlation of embeddings in E given by BioWord2Vec. (b) Class
distribution of generated Ground Truth (GT) labels (Top). Recall (Middle) and
Specificity (Bottom) of the labels compared with clinical notes. HFO: High Fre-
quency Oscillations. PLED: Partial Lateralized Epileptiform Discharge.

2.4 Implementation Details

We compare SzXAI with two baseline concept prediction frameworks from the
literature: [18] and [25]. We adopt their EEG-text similarity approach for etiology
prediction while maintaining SzXAI’s label generation and detection architec-
tures. We also conduct several ablations of SzXAI: average pooling (SzXAI-avg)
and max pooling (SzXAI-max) rather than attention-weighted, excluding the
alignment loss (SzXAI-NAl), and standard BCE with (SzXAI-bce) and without
alignment (SzXAI-bce-NAl). For thoroughness, we validate all models on two
state-of-the-art seizure detectors: DeepSOZ [16] and CNN-BLSTM [8]. These
networks remain frozen while training both SzXAI and the baselines.

We conduct experiments using a 10-fold cross-validation in Python v3.9.4
using Pytorch v2.2.1 [17] and Adam optimizer [13] with a batch size of one
patient on two A100 GPUs. 3 All methods were trained in 200 epochs with
early stopping ensuring no overfitting and thus fair comparison across methods.
The hyperparameters were tuned within the cross validation in the ranges: lr ∈
[10−4, 10−5], λ1 ∈ [0.5, 1] and λ2 ∈ [0.01, 0.001]

3 Experimental Results

Dataset: We validate SzXAI on 642 EEG recordings from 120 adult epilepsy
patients in the publicly available Temple University Hospital (TUH) corpus [21]
3 All scripts available on the Github repository

https://github.com/deeksha-ms/SzXAI
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Table 1: Performance of multi-label etiology prediction in 10-fold CV setup av-
eraged across 20 etiologies. Empirically-determined chance prediction is 0.05.

Method DeepSOZ[16] CNN-BLSTM[8]
Recall Precision Specificity Recall Precision Specificity

SzXAI-avg 0.42±0.09 0.29±0.05 0.57±0.01 0.57±0.12 0.32±0.10 0.50±0.08
SzXAI-max 0.50±0.07 0.29±0.05 0.45±0.01 0.35±0.12 0.28±0.13 0.52±0.08

SzXAI-bce-NAl 0.47±0.11 0.26±0.05 0.42±0.02 0.49±0.11 0.30±0.14 0.45±0.06
SzXAI-bce 0.44±0.08 0.28±0.04 0.54±0.02 0.45±0.10 0.31±0.12 0.45±0.06
SzXAI-NAl 0.42±0.06 0.28±0.04 0.48±0.01 0.43±0.07 0.3±0.09 0.54±0.09

Model of [18] 0.46±0.04 0.30±0.04 0.56±0.01 0.52 ±0.11 0.30±0.15 0.46±0.09
Model of [25] 0.42±0.10 0.27±0.05 0.49±0.04 0.43±0.08 0.29±0.11 0.5±0.04

SzXAI 0.50±0.05 0.32±0.06 0.58±0.01 0.52±0.14 0.32±0.11 0.59±0.07

within the age range of 19-91 years (average 55±16.6) who have clinically con-
firmed seizures of various types in their EEG with single-expert annotated and
de-identified clinical notes describing the seizure characteristics. EEG recordings
lasted an average of 79.8±135 min with 14.7±25.2 seizures per subject, each last-
ing 88.0±123.5 seconds. The extracted ground truth concept representation is
imbalanced, ranging from 80 to 420 EEG recordings per concept (Fig. 2(Top)).

Raw EEG signals are resampled to 200 Hz, filtered between 1.6-30 Hz, and
clipped at two standard deviations from the mean to remove muscle artifacts. To
ensure uniformity, each recording is separately normalized to have a zero mean
and unit variance. The recordings are cropped to 10 minutes around the seizure
event, maintaining a uniform distribution of onset times. Finally, we segment the
10-minute recording into non-overlapping 1-second windows to be fed into the
seizure detectors, which provide a binary prediction for each window of seizure
versus non-seizure to aid SzXAI’s attention-weighted etiology prediction.

Etiology Prediction Performance: Table 1 quantifies the etiology prediction
performance (precision, recall, and specificity) across all experiments within our
10-fold cross-validation setup. We empirically determined the average chance
prediction level to be 0.05 in our dataset. On average, SzXAI achieved the high-
est precision of 0.32 across all 20 etiologies, and the highest specificity of 0.58
in DeepSOZ and 0.59 in CNN-BLSTM while achieving comparable recall. The
pooling ablations are severely affected by class imbalance, thus reducing speci-
ficity in SzXAI-max and recall in SzXAI-avg in DeepSOZ. A reverse trend is seen
in CNN-BLSTM where SzXAI-avg achieves the highest recall at the cost of in-
creased false positives. The remaining baselines show lower performance overall,
highlighting the importance of our cross-modal alignment loss during training.

In all cases, the seizure detection performance is maintained at AUROC of
0.92±0.03 for DeepSOZ and 0.90±0.03 for CNN-BLSTM, which are frozen.

To better understand the results, we group the etiologies into four types:
(i) Spiking, (ii) Rhythmic, (iii) Interictal discharges, and (iv) Background. The
first two strongly indicate seizures, interictal discharges occur around seizures,
and the background covers non-seizure activity. Fig. 3(a) shows a confusion ma-
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Fig. 3: (a) Joint distribution of predicted vs true etiologies in four groups. (b)
t-SNE scatter plot of EEG encodings in the validation set. HFO: High Frequency
Oscillations. PLED: Partial Lateralized Epileptiform Discharge.

trix when comparing these groups in the true and predicted labels for SzXAI
applied to DeepSOZ. The large diagonal entries indicate a high recall ∼ 0.7;
however the interictal class has a has lower sensitivity due to class imbalance
and similarity with background activity. Fig. 3(b) presents a t-SNE plot from
the best-performing split in the cross validation, showing a clear separation be-
tween seizure and non-seizure etiologies and strong intra-group clustering with
“background” being distributed possibly due to its varied features. These results
demonstrate the strong discriminative ability of crossmodal alignment in SzXAI.

Fig. 4 presents the temporal alignment between the SzXAI encodings h̃1:T

and textual concept embeddings for an EEG recording with two seizures. Clinical
notes identified seizure-related patterns (“spike-and-wave”, “sharp wave”, “rhyth-
mic”) and postictal features (“slowing”, “evolving frequency”), both highly corre-
lated with EEG embeddings at respective time intervals only. SzXAI also pre-
dicted related spiking and background etiologies. Finally, we can use LLaMA to
generated a coherent summary from the predicted etiologies, as shown in green.

4 Conclusion

We have presented SzXAI , a novel explainable AI framework that can be added
to any EEG-based seizure detector. SzXAI predicts seizure and baseline etiologies
from EEG using cross-modal similarity and attention-weighted pooling across
two deep networks. It successfully aligns EEG dynamics with clinical concepts
through a novel knowledge-based loss function, which creates a distinctive em-
bedding space. We propose a training approach that leverages pretrained LLMs
for label construction and uses an LLM to generate human-readable summaries
of the seizure detection reasoning. Compared to existing methods, SzXAI proved
to be model-agnostic and explainable, taking a step toward clinical integration.

Acknowledgments. This work was supported by the National Institutes of Health
awards 1R01HD108790 (PI Venkataraman) and 1R01EB029977 (PI Caffo) and the
National Science Foundation CAREER award 1845430 (PI Venkataraman).
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Fig. 4: Temporal heatmap of correlation of EEG encodings of a patient with
all etiologies in E along with the sentence generated by prompting Llama with
predicted etiologies in bold. True etiologies are presented in green in the legend.
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