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Abstract. Shifts in data distribution can substantially harm the per-
formance of clinical AI models and lead to misdiagnosis. Hence, vari-
ous methods have been developed to detect the presence of such shifts
at deployment time. However, root causes of dataset shifts are varied,
and the choice of shift mitigation strategies highly depends on the pre-
cise type of shift encountered at test time. As such, detecting test-time
dataset shift is not sufficient: precisely identifying which type of shift
has occurred is critical. In this work, we propose the first unsupervised
dataset shift identification framework, effectively distinguishing between
prevalence shift, covariate shift and mixed shifts. We show the effective-
ness of the proposed shift identification framework across three differ-
ent imaging modalities (chest radiography, digital mammography, and
retinal fundus images) on five types of real-world dataset shifts, us-
ing five large publicly available datasets. Code is publicly available at
https://github.com/biomedia-mira/shift_identification.
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1 Introduction

Machine learning models are notoriously sensitive to changes in the input data
distribution, a phenomenon commonly referred to as dataset shift [28]. This is
particularly problematic in clinical settings, where dataset shift is a common
occurrence and may arise from various factors [3]. Changes in the frequency
of disease positives over time or across geographical regions cause prevalence
shift [9] (also known as label shift). The use of different acquisition protocols or
scanners [22,23], or a change in patient demographics [26] can induce shifts in
image characteristics, known as covariate shift. We illustrate examples of real-
world shifts in Fig. 1. Dataset shift can dramatically affect the performance of
AI, lead to clinical errors such as misdiagnosis and is recognised as the funda-
mental barrier hindering AI adoption [21,18,8,20]. It is hence crucial to imple-
ment safeguards allowing not only effective detection of the presence of shifts,
but importantly, reliable identification of the root causes. Comprehensive shift
detection and identification frameworks are key for the safe deployment and
continuous monitoring of AI in clinical practice.

Dataset shifts can be detected at deployment time by using statistical test-
ing to compare the distributions of incoming test data to the distribution of

https://github.com/biomedia-mira/shift_identification
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Fig. 1. Examples of dataset shifts in medical imaging. Reliably detecting and identi-
fying the nature of the shift is crucial to enable the safe deployment of ML systems.

the reference data (representative of the data used to validate the deployed AI
model). Significant progress has been made in this field where state-of-the-art
methods can detect various types of real-world shifts [14,17]. Shifts between test
and reference data can either be detected at the output level by comparing dis-
tributions of model outputs, or at the input level by comparing low-dimensional
feature representations of input images [17]. In this study, we also show that
different types of shifts require different shift detection approaches, and that
self-supervised (SSL) image encoders [4], yield excellent low-dimensional feature
representations for shift detection.

While detecting dataset shifts is important, it is insufficient for the safe de-
ployment of AI. Besides knowing that there is a problem, we need to be able to
identify the precise type of shift to take the necessary actions, implement pre-
ventive measures, and safeguard against harm caused by AI errors. Indeed, many
domain adaptation techniques are shift-specific: applying the wrong mitigation
technique may, in the best case, be ineffective in resolving the shift or, in the
worst case, severely harm model performance or calibration. For example, preva-
lence shifts can often be mitigated with lightweight output recalibration tech-
niques [1,24], but these rely on the assumption that no other types of shift are
present. Applying such label shift adaptation methods when the shift is actually
caused by covariate shift may drastically degrade model calibration and clinical
metrics. In contrast, covariate shifts require more advanced domain adaptation
techniques or model fine-tuning [29,12,25]. For example, image-harmonisation
techniques (e.g. [12]) or automatic correction methods (e.g. [18]) effectively mit-
igate effects of acquisition shifts on model performance but will fail in the case
of prevalence shift. The difficulty lies in the fact that a change in image charac-
teristics may cause similar changes in the distribution over model outputs as a
change in disease prevalence [18], and determining the cause of an observed shift
can be challenging. Despite its importance, automatic dataset shift identification
has remained an open problem.

In this work, we address this issue by proposing a dataset shift identification
framework capable of identifying the root cause of the underlying shift, effectively
separating (i) prevalence shift, (ii) covariate shift and (iii) mixed shift (both
prevalence and covariate shifts). To the best of our knowledge, this is the first
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Fig. 2. Proposed dataset shift identification pipeline. Contrarily to previous
works, we do not simply detect the presence of shifts but also identify the nature of the
shift, leveraging both task model outputs and features from self-supervised encoders.

framework able to identify the type of test-time shifts in an unsupervised manner
for imaging data, beyond solely detecting shifts. An in-depth evaluation across
three different clinical applications (chest radiography, digital mammography,
and retinal fundus images) on five types of real-world dataset shifts demonstrates
that our framework accurately distinguishes between prevalence shifts, covariate
shifts, and mixed shifts across various scenarios.

2 Background

Shift definitions. Formally, let X denote the input image and Y the target. La-
bel shift [16] (or prevalence shift) occurs when label distribution changes across
domains i.e. Pref (Y ) ̸= Ptest(Y ), the conditional distributions are preserved, i.e.
Pref (X|Y ) = Ptest(X|Y ), where Pref and Ptest denote distributions on refer-
ence and target domains respectively. Conversely, covariate shift occurs when
Pref (X) ̸= Ptest(X), while conditional distributions are preserved [16]. Acquisi-
tion and subpopulation shifts are cases of covariate shifts as they directly affect
image appearance.

Dataset shift detection. Several paradigms have been proposed for dataset shift
detection. The simplest method to implement consists of comparing distributions
of a classifier’s outputs between the reference and test domain, proposed by
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Rabanser et al. [17] and referred to as ‘Black Box Shift Detection’ (BBSD).
Specifically, softmax model outputs are collected for all samples in the reference
and test sets. Then, for each class, a separate univariate Kolmogorov-Smirnov (K-
S) test is run to determine if the class-wise predicted probabilities distributions
differ between reference and test domain, the overall significance of the shift is
then determined after applying Bonferroni [7] correction for multiple testing.
Rabanser et al. [17] also propose another type of shift detector where reference
and test data input distribution are compared using a feature-based approach.
In this test, the input sample (image) first gets projected to a smaller dimension,
e.g. through a pretrained neural network encoder and the shift is then measured
using the ‘Maximum Mean Discrepancy’ (MMD) permutation test. Other shift
detection approaches consist of training a domain classifier to classify samples
between the reference and test domains [15,10] and using the accuracy of this
classifier as a proxy for measuring distances between distributions. One drawback
of this approach is its high computational cost: for every test set, a new domain
classifier must be trained, which is highly impractical in continuous monitoring
scenarios.

3 Methods

3.1 Dataset shift identification pipeline

We propose a framework for identifying whether dataset shift is caused by preva-
lence shift, by covariate shift or by a mix of both. The approach is divided in two
stages (Fig. 2). First, we perform standard dataset shift detection to separate
the ‘shift’ from the ‘no shift’ cases (Fig. 2, A). For this step, we use a dual de-
tection approach, combining signals from task model outputs and features from
self-supervised (SSL) encoders to detect shifts. In details, we independently run
the BBSD and the MMD shift detection tests; this yields C p-values for the
BBSD test (one per class), and one p-value for the MMD permutation test,
we then apply Bonferroni correction on the C + 1 p-values to get the overall
significance. If a shift is detected we then proceed to shift identification. This
starts with estimating the prevalence in the test set (Fig. 2, B.3). For this, we
can leverage the prevalence shift adaptation literature, where various methods
have been proposed to estimate the density ratio Pref (Y )/Ptest(Y ) [1,19,24].
Here, we use the state-of-the-art ‘class probability matching with calibrated net-
works’ (CPMCN) method [24] to estimate this ratio and the test set prevalence.
Next, we resample the reference set to match this estimated prevalence (Fig. 2,
B.4). We then first compare feature distributions between prevalence-adjusted
reference and test set (Fig. 2, B.5): if differences are no longer significant after
adjusting the prevalence, the shift is attributed to prevalence shift. Conversely,
if differences persist after adjusting the prevalence, then covariate shift is neces-
sarily present. In this case, we compare model output distributions with BBSD
to determine whether prevalence shift is also present (Fig. 2, B.6). Precisely, if
there were significant differences in model output distributions before adjusting
the prevalence, but this shift disappears after adjusting the prevalence, we know



Automatic dataset shift identification 5

that prevalence shift is also responsible for the observed shift, in this case we
conclude that the observed shift is a case of mixed shift (prevalence + covariate
shift). Else, we conclude that the shift is attributed to covariate shift only.

3.2 Datasets and shift generation

We evaluate our methods on four different datasets covering three different imag-
ing modalities: (i) chest radiography using PadChest [2] (collected in Spain, with
two scanners); (ii) mammography using the EMBED [11] dataset (mammograms
acquired in the US with six different scanners), and (iii) fundus images for which
we create ‘RETINA’ a multi-domain dataset by combining three different public
datasets: the Kaggle Diabetic Retinopathy Detection dataset [6], the Kaggle Ap-
tos Blindness Detection dataset [13] and the Messidor-v2 dataset [5] (covering
three countries US, India and France and various acquisition devices from high
quality scanners to phone pictures). To study prevalence shift detection, we as-
sociate each dataset with a downstream task. For chest radiography datasets we
focus on pneumonia detection, for mammography on breast density assessment
(4 classes), and for retinal images on binary diabetic retinopathy classification.
Then, we study various types of covariate shifts. For PadChest, we study gender
shift by varying the proportion of female patients in the test set. Moreover, Pad-
Chest contains scans acquired with two scanners, ‘Phillips’ (40%) and ‘Imaging’
(60%). This allows to simulate different levels of acquisition shift, by varying
the proportion of Phillips scans in the test set. Similarly, for EMBED [11], we
study acquisition shift by varying the distribution of scanners in the test set.
This dataset offers a complementary view to PadChest, with a multi-class task
of interest and providing even more flexibility for simulating diverse acquisition
shifts (six scanners). Note that in EMBED each exam comprises 4 mammograms
(left/right breasts and MLO/CC views). We excluded all exams that did not con-
tain exactly four images and kept exactly one exam per patient, and ensure that
test set sampling was done at the exam level. Finally, for the RETINA dataset,
we simulate covariate shifts by varying the proportion of samples coming from
each underlying dataset (Aptos [13], Kaggle DR [6] and Messidor [5]).

Implementation details

4 Results

4.1 Different shifts require different shift detectors

Prior to diving into shift identification, we first investigate which types of shifts
are successfully detected by prominent dataset shift detection methods. We com-
pare two families of shift detectors: model output-based (BBSD) and feature-
based detectors (MMD). We additionally test a dual approach that combines
both approaches for improved shift detection (‘Duo’). For feature-based shift
detection, any pretrained network can be used as feature extractor, we could



6 M. Roschewitz et al.

100 250 1000
Number of test images

0

25

50

75

100
D

et
ec

te
d 

sh
ift

 (%
) * *

* *

* *

Prevalence: 20% (+16%)

PadChest  - Prevalence shift
Original prevalence: 4%

50 100 250
Number of exams (each with 4 images)

0

25

50

75

100

D
et

ec
te

d 
sh

ift
 (%

)

* *

* * * *
Density class distribution: 15%, 35%, 35%, 15%

EMBED  - Prevalence shift
Original density distribution: 7%, 37%, 47%, 7%

100 250 1000
Number of test images

0

25

50

75

100

D
et

ec
te

d 
sh

ift
 (%

) * * * *

*

*
Proportion of females: 25% (-26%)

PadChest  - Gender shift
Original proportion of females: 51%

100 250 1000
Number of test images

0

25

50

75

100

D
et

ec
te

d 
sh

ift
 (%

) * * * * *

*

* *
Proportion of Phillips: 25% (-17%)

PadChest - Acquisition shift
Original proportion of Phillips: 42%

50 100 250
Number of exams (each with 4 images)

0

25

50

75

100

D
et

ec
te

d 
sh

ift
 (%

)

* * * *

* * * * *
Scanner distribution: 55%,0%,10%,10%,15%,10%

EMBED - Acquisition shift
Original scanner distribution: 79%,0%,5%,4%,7%,5%

100 250 1000
Number of test images

0

25

50

75

100

D
et

ec
te

d 
sh

ift
 (%

)

* * * * * * * * *
Domain distribution [0.05, 0.3, 0.65]

RETINA  - Acquisition shift
 Original domain distribution: [0.04, 0.09, 0.87]

Shift detector
BBSD test (task model outputs)
MMD (Supervised ImageNet features)

MMD (Task model features)
MMD (SimCLR ImageNet features)

MMD (SimCLR Modality Specific features) Duo BBSD + MMD (SimCLR ImageNet)
Shift detector

BBSD test (task model outputs)
MMD (Supervised ImageNet features)

MMD (Task model features)
MMD (SimCLR ImageNet features)

MMD (SimCLR Modality Specific features) Duo BBSD + MMD (SimCLR ImageNet)

Fig. 3. Shift detectors comparison. We studied prevalence shift as well as two sub-
types of covariate shifts: subpopulation and acquisition shift. Shift detection rate is
computed over 200 bootstrap samples. Feature-based detection (MMD) is best for co-
variate shift detection and model-output based detection (BBSD) is best for prevalence
shift. For each test set size, the best detector along with all detectors not significantly
different from it, are denoted with ∗ (Fisher’s exact test, at level .05, with Bonferroni).

for example use the task model directly. However, this may not be the best
choice as learned features will be heavily skewed towards encoding character-
istics specifically relevant to that task as opposed to encoding more generic
image representations [27]. Hence, we here explore the potential of SSL image
encoders for shift detection as these encoders learn to effectively summarise the
information encoded in a given image. We compare the performance of MMD de-
tection for four different encoders: (i) ‘Supervised ImageNet’ trained to perform
classification on ImageNet; (ii) ‘Task model’ trained to perform the downstream
classification task; (iii) ‘SSL ImageNet’ trained on ImageNet data only; (iv) ‘SSL
Modality Specific’ trained on the same modality as the reference dataset.

Fig. 3 show the shift detection rates for various dataset-shift combination
across shift detectors. We can see that for prevalence shifts, output-based shift
detection performs significantly better than all feature-based tests. This is in-
tuitive as a change in prevalence should directly be reflected by a change in
the distribution of task model outputs. The exact opposite is true for covari-
ate shifts, where most feature-based detectors perform substantially better than
output-based detectors, regardless of whether we look at acquisition or subpop-
ulation shifts. The results also show that for optimal detection of more subtle
covariate shifts, it is crucial to use an SSL encoder, as SSL encoders offer substan-
tially better detection rates than their supervised counterparts. The SSL model
trained on ImageNet data was particularly effective and, in some cases even bet-
ter than the modality-specific SSL model. Given the orthogonal behaviour of
output-based and feature-based tests, we introduce a dual detection approach
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Fig. 4. Shift identification accuracy. Across all datasets, the shift identification
framework is able to successfully detect and identify all types of shifts high accuracy.

combining responses from output-based and SSL feature-based shift detectors
(see Section 3). Results in Fig. 3 confirm that this ‘Duo’ approach performs
best overall across shifts and datasets. For example, in PadChest, with 1000 test
cases: MMD (ImageNet-SSL features) has 65% detection rate of prevalence shift,
100% for gender and acquisition shift, i.e. an average of 88% detection across
shifts, BBSD has an average of 60% across shifts, and Duo has an average of
detection rate close to 100%. We employ this ‘Duo’ approach for the detection
step of our shift identification pipeline.

4.2 Shift identification accuracy

In this work, we propose a framework able to precisely identify the type of shift
present in the test dataset (see Section 3). Evaluation results in Fig. 4 show that
our framework is capable of distinguishing between prevalence shifts, covariate
shifts and mixed shifts with high accuracy across all datasets and types of shifts.
For prevalence shifts, the average shift identification rate, across datasets and
shift levels, is 91% with 500 test images (top row). Similarly, for covariate shifts
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(acquisition and gender shifts), when using a test set size of 500 images (250
exams on EMBED), the identification accuracy is greater than 80% for any shift
level and dataset and the average accuracy is 87%. Importantly, the framework
is also able to accurately distinguish between cases of covariate shift only and
cases of covariate and prevalence shifts. With a test set of 500 images (resp. 250
exams on EMBED), mixed gender and prevalence shifts are correctly identified
as mixed shifts with an average accuracy of 75% across all tested scenarios.
Overall, more subtle shifts are best detected with larger test sets whereas larger
shifts can be detected with smaller test sets.

5 Discussion

Shift identification is critical for monitoring AI systems in deployment and for
the root cause analysis of AI performance drift. By analysing common dataset
shift detection paradigms, we find that different types of shifts require different
types of shift detectors. Our analysis also demonstrates that encoders trained
in a self-supervised manner yield features with substantially higher shift detec-
tion power than supervised counterparts. Maybe surprisingly, our results show
that generic encoders trained in a self-supervised manner on ImageNet provide
highly discriminative features for medical image dataset shift detection, trans-
portable across datasets. Following these findings, we propose a lightweight and
practical shift identification framework, capable of detecting and identifying im-
portant real-world dataset shifts, showing high accuracy in correctly identifying
the type of shift present in the test set across all modalities, tasks and various
levels of shift intensity. Our results demonstrate the practical value of the shift
identification method, which does not require any training at test time, nor any
ground truth labels or annotations on the test domain data. The use of a readily
available SSL encoder trained on ImageNet data for feature extraction dispenses
us from training any additional model for shift detection and identification pur-
poses. Combining signals from both feature-based and model output-based shift
detectors yields reliable and consistent detection and identification across all
types of shifts. Importantly, our method not only separates covariate shifts from
prevalence shifts but also reliably detects when both types of shifts are present
in the test set, rendering the proposed method applicable to many real-world
deployment scenarios.

In terms of limitations, we note that in the case of covariate shift, on its
own, the proposed framework does not allow for a more fine-grained identifica-
tion of the origin of shift, e.g. the distinction between population and acquisition
shifts. To allow for an even more precise sub-type shift identification, integrating
metadata statistics in the pipeline could complement the framework. However,
relying solely on metadata monitoring is insufficient as it only enables the detec-
tion of shifts affecting the specific attributes collected at test time. The proposed
framework can help uncover shifts that are not detectable by means of simply
tracking population metadata. In this context, our shift identification framework
offers an important safeguard for deploying AI models in clinical practice.
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