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Abstract. Periodontal disease is a leading cause of tooth loss and is
linked to systemic conditions such as endocarditis, diabetes, cardiovas-
cular disease, and osteoporosis. Intraoral ultrasound (IUS) videos offer
a non-invasive means for diagnosing periodontal structures, but existing
segmentation methods rely on extensive manual annotations. We pro-
pose OralSAM, a one-shot video segmentation network inspired by the
Segment Anything Model (SAM), which requires annotation from only
a single frame. Our network integrates an adaptive feature correlation
module to capture temporal dependencies and refine segmentation con-
sistency across frames. Additionally, we introduce a self-prompting strat-
egy based on optical flow, dynamically adjusting point prompts based on
motion cues in consecutive frames to improve segmentation accuracy. To
further enhance robustness, we incorporate a self-correction mechanism
that refines mask embeddings adaptively, reducing propagation errors in
intermediate frames. The combination of these components ensures ef-
fective generalization to unseen anatomical structures and improves tem-
poral coherence in IUS videos. We evaluate OralSAM on both IUS and
public datasets, demonstrating superior performance over state-of-the-
art methods. Unlike conventional methods, our approach significantly
reduces annotation effort while maintaining high segmentation accuracy.
Our approach provides a scalable solution for real-time clinical appli-
cations, enabling more efficient and accurate periodontal disease assess-
ment. Code is available at https://github.com/BioMedCom/OralSAM.

Keywords: Intraoral ultrasound videos - Periodontal disease - Segment
anything model - Segmentation - One-shot learning.
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1 Introduction

Periodontal disease is a prevalent oral condition that affects the structural in-
tegrity of the periodontium, leading to inflammation, gingival recession, and ulti-
mately, tooth loss [TTJI8|. Intraoral ultrasound (IUS) has emerged as a promising
imaging modality for assessing periodontal structures, offering advantages over
traditional techniques such as cone beam computed tomography and radiogra-
phy [IIT3]. TUS is non-invasive, provides real-time imaging, is portable, operates
without radiation, and is cost-effective, making it well-suited for clinical applica-
tions. Accurate segmentation of periodontal structures in TUS videos is essential
for early diagnosis, disease progression monitoring, and treatment planning [16].
Despite these advantages, existing segmentation methods rely heavily on fully
supervised deep learning, requiring large-scale manual annotations, which are
labor-intensive and impractical for clinical deployment [I7I7IT2/T5]. Moreover,
most approaches focus on static image segmentation, failing to account for tem-
poral coherence in ultrasound videos [6/5].

Recent advancements in foundation models, particularly the Segment Any-
thing Model (SAM) [4], have demonstrated exceptional performance in zero-shot
image segmentation. However, applying SAM directly to medical images, espe-
cially ultrasound, remains challenging due to unique imaging constraints such
as low contrast, speckle noise, and anatomical variability [I4]. While domain-
specific adaptations of SAM, such as MedSAM [10], SAMed [19], and SAMUS [9],
have attempted to bridge this gap, they still suffer from key limitations. SAMUS,
for instance, is specifically designed for static ultrasound segmentation but does
not incorporate temporal information necessary for video segmentation. These
methods continue to require extensive manual prompts, lack robust temporal
modeling, and struggle with generalizing to unseen anatomical structures. The
reliance on user-provided prompts also reduces their applicability in real-time
clinical workflows. A major limitation of existing medical SAM-based models is
their inability to incorporate temporal information [I4], which is crucial for video
segmentation. Current adaptations focus primarily on static frames, leading to
inconsistent segmentation across consecutive frames. This results in unreliable
predictions that limit their usability in real-time medical imaging applications.
Additionally, these models still demand dense annotations for effective training,
restricting their scalability and deployment potential in clinical settings.

To address these challenges, we propose OralSAM, a one-shot segmenta-
tion network specifically designed for IUS videos. Unlike existing adaptations of
SAM, our approach integrates temporal information through an adaptive fea-
ture correlation (AFC) module, ensuring segmentation consistency across video
frames. Additionally, we introduce a self-prompting strategy that eliminates
the need for expert-provided point prompts. Our method requires only a sin-
gle ground truth annotation for the first frame, leveraging optical flow-based
motion cues to dynamically adjust segmentation prompts, leading to more ro-
bust and stable predictions over time. Our approach is further strengthened
by a self-correction mechanism, which refines mask embeddings adaptively, re-
ducing error propagation across frames. This innovation ensures that even in
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challenging low-contrast ultrasound environments, our method maintains high
segmentation accuracy with minimal manual intervention. Through extensive
evaluations on IUS and public datasets, we demonstrate that OralSAM outper-
forms state-of-the-art recent medical foundation models, achieving higher Dice
and Intersection over Union (IoU) scores while significantly reducing annotation
dependency. By addressing the limitations of existing medical foundation mod-
els, our study represents a significant step toward the practical deployment of
Al-driven segmentation tools in clinical workflows. Our approach enables more
efficient and accurate segmentation in real-time medical imaging applications,
facilitating broader adoption of foundation models in healthcare and improving
diagnostic efficiency and accessibility.

2 Method

The exceptional performance of SAM is largely attributed to its robust prompts
and the strong feature representations extracted by the image encoder. To lever-
age this in our one-shot segmentation network, we utilize temporal cues within
videos, enabling segmentation using only a single-frame annotation and a ground-
truth prompt. We integrate an AFC module with a self-point prompting mech-
anism to enhance segmentation accuracy and ensure consistency across frames.
The overall illustration of our one-shot intraoral video segmentation network is
depicted in Fig.
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Fig. 1. Illustration of the proposed OralSAM network.
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2.1 Adaptive Feature Correlation Module

To effectively model the temporal coherence of anatomical structures in IUS
videos, we introduce the Adaptive Feature Correlation Module (AFCM). Given
an input query frame I; and support frame I;_;, we extract their high-level
representations using the Image Encoder F; and FE;_1, respectively:

Xe(t) = Ei(Ly), Xe(t—1) = Ei-1(l—1). (1)

The support mask M (t — 1) represents the predicted segmentation mask from
the previous frame and is upsampled using bilinear interpolation to match the
dimensions of the corresponding encoder feature map X, (t—1). This ensures that
both tensors are spatially aligned for element-wise operations. The upsampled
mask highlights the most relevant regions of the feature map by performing a
Hadamard product (element-wise multiplication), resulting in a refined feature
map X/ (t—1) = X.(t—1)© M(t—1), where ® denotes the Hadamard product.

Temporal Feature Correlation To measure the relevance between the query
and support features, we compute a cosine similarity map:

XI(t—1)  Xe(t)

S= ;
[(Xe(t =D [Xe(t)] + €

(2)

where € = 1077 is a small constant for numerical stability. The similarity map is
then refined by extracting its maximum response across feature channels, S;,q. =
max.(S). To further enhance feature consistency, we apply a weighted global
average pooling operation using the previous frame’s predicted mask M;_1:

c . Zi,j X€<t_1>(i7j)Mt71(i7j)
! S Mia(if)+0

where § is a smoothing factor set to 5 x 10~% and i, j index the spatial positions
over the height and width of the feature map. The refined feature representation
X7, is concatenated with the current frame feature X.(t) and the similarity
map Spq. along the channel dimension. The combined tensor is then passed
through @,,(-), a lightweight convolutional fusion function implemented using
a 1 x 1 convolution followed by a ReLU activation. This operation generates
enriched feature embeddings that enhance temporal alignment and ensure seg-
mentation consistency across frames. This adaptive correlation strategy enables
our method to achieve robust segmentation in ultrasound video sequences with
minimal supervision.

(3)

2.2 Optical-Flow-Based Self-Prompt Generation Strategy

SAM-based segmentation frameworks rely on expert-provided prompts, but in
one-shot ultrasound video segmentation, manually annotating each frame is im-
practical due to non-rigid anatomical transformations caused by freehand probe
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movement. A single prompt in the first frame does not naturally extend across
frames, as the target structure undergoes non-uniform motion, leading to seg-
mentation drift. To address this, we propose an optical flow-based self-prompting
strategy that dynamically propagates point prompts based on motion cues, en-
suring consistent segmentation.

Optical Flow Estimation Given a ground-truth segmentation mask My from
the first frame Iy, we extract its contour points Py, which serve as key features
for tracking anatomical structures. Instead of selecting arbitrary keypoints, we
leverage these anatomical contours to define the region of interest. To estimate
motion between Iy and I; ultrasound frames, we compute sparse feature corre-
spondences using the Lucas-Kanade pyramidal optical flow method [2I20],

P, = calcOpticalFlowPyrLK (I, I1, Fp). (4)

To mitigate drift, we enforce a spatial consistency constraint: if the mean squared
distance between tracked points and their original cluster center exceeds a thresh-
old 4, the points are reset to their initial locations. This helps maintain anatom-
ical accuracy and prevents points from deviating from the desired structure.
Using the valid correspondences (P, P;), we estimate an affine transformation
matrix A that aligns the mask My with the current frame. This transforma-
tion matrix is then applied to warp the segmentation mask M, onto the current
frame:

M;" = warpAffine(My, A). (5)

Once the segmentation mask is warped onto the next frame, we generate self-
point prompts for subsequent frames without requiring additional expert input.
Instead of selecting arbitrary points, we sample prompt locations directly from
the warped mask: P = RandomSample(M}”), where P; is the selected point
prompt for SAM-based segmentation in the next frame. This automatic point
selection ensures that segmentation remains continuous across frames while re-
ducing temporal drift.

2.3 Loss Function

Self-Correction Mechanism To further improve segmentation consistency, we
integrate a self-correction mechanism inspired by knowledge distillation [3]. This
method refines predictions by leveraging both past and present segmentation
results. To implement this, we compute the probability distributions p; and ¢,
across consecutive frames from the output logits ¢;+1 and g; respectively:

p; = softmax (yt;1> ,  q; = softmax <zf) (6)

where p;, g; corresponds to the softmax of the logits at time ¢ 4+ 1 and ¢ re-
spectively, and T is the temperature parameter controlling the sharpness of the
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probability distribution, which encourages consistency between sequential frame
predictions. The KL divergence loss function is implemented as:

Ly, = KLDivLoss (log ps, g;) x T? (7)

where KLDivLoss denotes the Kullback-Leibler divergence loss computed in a
batch-wise manner, ensuring robust and stable segmentation alignment over
time. During training, the overall loss function integrates the segmentation loss
(combining cross-entropy and Dice losses) with the self-correction terms:

L=(1—-XLcg+ ALpjce + BLk1L (8)

where A\ balances the segmentation losses, and 5 controls the influence of self-
correction mechanisms. This ensures that predictions improve over time without
additional computational overhead during inference.

2.4 Implementation Details

We built our network based on SAMUS, which adopts the standard ViT-B/16
architecture as the segmentation backbone. The model was trained on the Narval
Compute Canada cluster with A100 GPUs, utilizing CUDA 12.2. We employed
the AdamW optimizer with an initial learning rate of 1 x 1074, a batch size
of 1. The confidence threshold 7 was set to 0.5. The loss weight coefficients
A, B were set to 0.8, and 0.002, respectively. The training was conducted for
100 epochs using grayscale ultrasound video frames resized to 256 x 256. For
training our one-shot segmentation network, we utilized only the first frame’s
manual annotation of each video as ground truth for loss computation.

3 Experiments and Results

3.1 Dataset and Evaluation Metrics

This study used IUS data collected from 31 orthodontic patients (25 females
and 6 males) aged 11 to 57 years [6] . Ethical approval was obtained from the
Research Ethics Committee of the University of Alberta, and formal consent
was secured from all patients and their legal guardians. Data acquisition was
conducted using a custom-built handheld 20-MHz intraoral transducer system,
with the transducer positioned at the midline of each tooth to capture MP4
video recordings at an imaging depth of 13 mm. The dataset includes ultra-
sound scans of both mandibular and maxillary teeth, comprising 63 mandibular
incisors, 43 mandibular canines, 26 mandibular first premolars, 51 maxillary
incisors, 28 maxillary canines, and 27 maxillary first premolars. For one-shot
segmentation evaluation, a random subset of 9 or 10 frames was selected from
each video. Gingival structures were manually annotated by an imaging scientist
with nine years of experience in US imaging, and all ground truth labels were
subsequently verified by an experienced orthodontist. Additionally, to evaluate
the generalizability of the proposed method, we assessed its performance on the
publicly available CAMUS echocardiography dataset [§].
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3.2 Comparison with the state-of-the-art foundation models

To ensure a fair comparison with recent state-of-the-art foundation models, we
implemented their methods using the official repositories while maintaining the
same backbone architecture. Table [I| presents the quantitative results of the

Table 1. Quantitative comparison on IUS and CAMUS dataset.

Method Intraoral CAMUS
Dice (%) IoU (%) Dice (%) IoU (%)
SAM [4] 0.79 £ 0.08 0.67 £ 0.11 0.88 4+ 0.05 0.80 £ 0.08
SAMUS [9] 0.87 £ 0.07 0.79 £ 0.09 0.92 4+ 0.03 0.86 & 0.05
SAMed [19] 0.87 + 0.03 0.81 4+ 0.05 0.91 4+ 0.03 0.89 + 0.03
MedSAM [1I0] 0.89 £+ 0.04 0.82 £ 0.07 0.92 4+ 0.02 0.86 £ 0.04

OralSAM 0.91 £+ 0.04 0.83 % 0.06 0.94 £ 0.02 0.89 + 0.02

comparison on our IUS and CAMUS dataset. Our proposed one-shot segmenta-
tion network achieves the highest performance across both Dice and IoU met-
rics with a Dice coefficient of 0.91 4+ 0.04, surpassing all other models. The
second-best performance is observed with MedSAM, which attains a Dice score
of 0.89 £ 0.04. Although our method offers marginal improvements in a one-
shot setting, it consistently outperforms all competing approaches across both
evaluation metrics. To further evaluation, we provide qualitative visualizations
in Fig. |2 highlighting challenging cases. In each row, the first figure presents the
manual segmentation annotation overlaid in red. In particular, SAM struggles
with significant segmentation errors, especially in low-contrast regions, leading
to misaligned contours. SAMUS and SAMed demonstrate inconsistent bound-
ary delineation, often misidentifying anatomical structures. While MedSAM pro-
duces smoother and more precise contours, minor deviations from the ground
truth persist. In contrast, our proposed method consistently delivers the most
accurate segmentation, closely following anatomical structures.As evident from
Fig. [2| the proposed method consistently delivers the most accurate segmenta-
tion, closely following anatomical structures and effectively minimizing errors in
both over-segmentation and under-segmentation scenarios.

3.3 Ablation study

To assess the contribution of each component in the proposed network, we con-
ducted ablation studies using the IUS dataset. Table [2presents the Dice and IoU
scores obtained from different model configurations. The baseline model achieves
a Dice score of 0.87 + 0.09 and an IoU of 0.79 £+ 0.11, serving as a reference
for subsequent improvements. Incorporating the AFC module enhances perfor-
mance, yielding a Dice score of 0.88 + 0.08 and an IoU of 0.80 + 0.11, indicating
its effectiveness in improving segmentation accuracy across video frames. Fur-
ther integrating optical-flow-based self-point prompt (SPP) generation strategy
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Input SAM SAMUS SAMed MedSAM  OralSAM

Fig. 2. Visual comparison with state-of-the-art (SOTA) methods on the IUS test set.
Red and green regions represent the ground truth and model predictions, respectively.
Yellow boxes highlight areas where the OralSAM predictions closely align with the
ground truth, while red boxes indicate regions with noticeable discrepancies.

automates self-point prompting based on ultrasound frame movement, thereby
reducing the need for extensive expert-provided prompts. The proposed model,
which integrates all components, achieves the highest performance with a Dice
score of 0.91 4+ 0.04 and an IoU of 0.83 + 0.06. This highlights the effectiveness
of our architectural enhancements in improving segmentation accuracy while
minimizing errors in boundary delineation.

Table 2. Ablation study on the IUS testing dataset.

Method Dice (%) IoU (%)

Baseline 0.87 4+ 0.09 0.79 + 0.11
Baseline + AFC 0.88 + 0.08 0.80 £+ 0.11
Baseline + AFC + SPP 0.90 £+ 0.04 0.82 £ 0.07

OralSAM 0.91 + 0.04 0.83 + 0.06
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4 Conclusion

We propose OralSAM, a one-shot segmentation network for intraoral ultra-
sound imaging. By integrating temporal information and self-point prompting,
our method enables automated segmentation with minimal expert intervention.
Evaluations show that OralSAM outperforms existing models in segmentation
accuracy and consistency. Our framework reduces reliance on manual annota-
tions, improving feasibility for real-time clinical deployment. This scalable ap-
proach supports broader adoption of foundation models in medical imaging,
improving diagnostic workflows and clinical accessibility.
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