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Abstract. Attention-based methods have demonstrated exceptional per-
formance in modelling long-range dependencies on spherical cortical sur-
faces, surpassing traditional Geometric Deep Learning (GDL) models.
However, their extensive inference time and high memory demands pose
challenges for application to large datasets with limited computing re-
sources. Inspired by the state space model in computer vision, we in-
troduce the attention-free Vision Mamba (Vim) to spherical surfaces,
presenting a domain-agnostic architecture for analyzing data on spher-
ical manifolds. Our method achieves surface patching by representing
spherical data as a sequence of triangular patches derived from a subdi-
vided icosphere. The proposed Surface Vision Mamba (SiM) is evaluated
on multiple neurodevelopmental phenotype regression tasks using corti-
cal surface metrics from neonatal brains. Experimental results demon-
strate that SiM outperforms both attention- and GDL-based methods,
delivering 4.8 times faster inference and achieving 91.7% lower mem-
ory consumption compared to the Surface Vision Transformer (SiT)
under the Ico-4 grid partitioning. Sensitivity analysis further under-
scores the potential of SiM to identify subtle cognitive developmen-
tal patterns. The code is available at https://github.com/Rongzhao-
He/surface-vision-mamba.

Keywords: Cortical spherical manifold · State space model · Infant
magnetic resonance imaging.

1 Introduction

Many methods have been developed for traditional Euclidean space data, such
as Convolution Neural Networks (CNNs) and attention-based [2,20] approaches.
CNNs calculate the weighted sum at each location, while attention-based meth-
ods treat the data as a sequence of patches. However, few models exist for non-
Euclidean space data consist of graph, manifold and hyperbolic space data which
have more complex geometries and distance metrics.

https://github.com/Rongzhao-He/surface-vision-mamba
https://github.com/Rongzhao-He/surface-vision-mamba
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Fig. 1. Representative icosahedron discretized spherical surfaces with sequential sub-
divisions. The number of faces of each spherical surface is denoted under the surface.

Existing models for processing non-Euclidean data can be broadly classified
into attention- and Geometric Deep Learning (GDL)-based [6,16,12,1,3,10,19,13]
methods. Attention-based methods are effective in capturing long-range depen-
dencies but are constrained in resource limited situations due to the quadratic
complexity of the attention mechanism concerning sequence length, leading to
higher memory consumption and slower inference time. Conversely, GDL-based
methods are effective in handling complex geometric topology structure and dis-
tance metrics. However, they fail to extract global patterns, especially when
applied to large-scale and highly intricate data, resulting in diminished perfor-
mance. Thus, a key challenge for processing non-Euclidean data lies in improving
efficiency while maintaining relatively excellent performance.

The emergence of State Space Models (SSMs) [8,11], has revitalized tradi-
tional sequence modeling, enabling efficient representation learning. A recent
variant Mamba [7], has significantly surpassed traditional SSMs by integrating
a selective scan mechanism that adapts parameters based on input and using
a hardware-aware algorithm to parallelize scanning, thereby reducing memory
I/O for more efficient inference. Motivated by ViT [5] and ViG [9], [21] adapted
Mamba to computer vision, introducing a bidirectional SSM structure to address
direction-sensitive challenges, termed Vision Mamba (Vim).

Non-Euclidean data, particularly spherical cortical surface, is characterized
by high resolution, rich features, and intricate geometric shapes, as the corti-
cal surface is inherently a high-dimensional manifold. While these data provide
valuable insights into neurodevelopment, their effective representation poses a
formidable challenge, often requiring a balance between performance and com-
putational efficiency. Inspired by the efficiency of Vim, we extend its application
to cerebral cortex analysis—an important yet underexplored area—by proposing
Surface Vision Mamba (SiM). To adapt SiM to the unique characteristics of cor-
tical surface data, we adjusted the input sequence length using various surface
patching methods, as illustrated in Fig. 1.

The main contributions of this study can be summarized as follows:

1. We introduce SiM, an adaptation of Vim, as a generic backbone network for
analyzing data mapped onto genus-zero surfaces.

2. Leveraging the suitability of Mamba for tasks with long-sequence and au-
toregressive characteristics [17], we explore the impact of varying input se-
quence length on surface data in non-Euclidean space. We further implement
autoregressive pretraining to validate the effectiveness of this approach.
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Table 1. Demographic and clinical information of the subjects.

dHCP Replication dataset
(N=526) (N=10)

Birth age [weeks +days], median (IQR) 38+5 (38+1 - 40+5) 37+2 (35+4 - 39+0)
Scan age [weeks +days], median (IQR) 41+0 (39+4 - 42+2) 39+4 (39+2 - 40+5)
Birth weight, mean (SD) 3.09 (0.64) 2.06 (1.00)
Head circumference at scan, mean (SD) 34.83 (3.72) -
Radiology score (1/2/3/4/5) 270/171/51/10/24 -
Gender (M/F) 288/138 6/11

3. Extensive experiments on three neurodevelopmental phenotype regression
tasks, including the prediction of postmenstrual age (PMA) and long-term
language and motor outcomes, demonstrate that our proposed SiM achieves
promising performance compared to attention- and GDL-based models and
is 4.8× faster than SiT and saves 91.7% GPU memory when performing
batch inference under the Ico-4 grid partitioning.

2 Materials and Methods

Image acquisition and Dataset. The imaging data used in this work are
from the publicly available Developing Human Connectome Project (dHCP)
and a private dataset collected at Gansu Provincial Maternity and Child-care
Hospital (GPMCH). We used T1-weighted (T1w) and T2-weighted (T2w) images
to calculate morphometric metrics of cerebral cortex.

The dHCP is approved by the United Kingdom Health Research Ethics Au-
thority (reference number: 14/LO/1169). Additionally, we collected T1w and
T2w images of 10 infants from GPMCH (2020-GSFY-05). These images were
acquired in the resolution of 0.8×0.8×1.6 mm3 with 0.8 mm overlap, and were
reconstructed to 0.5 mm isotropic resolution.

Concerning the data from dHCP, a total of 526 infants covering preterm-
and term-born neonates are enrolled. The neurodevelopmental assessments for
these infants, conducted at 18 months of age using the Bayley-III Scales of Infant
Development, can also be obtained. We used the following exclusion criteria: For
PMA prediction, (i) we excluded the later scans of participants who were scanned
twice; (ii) term-born neonates with focal abnormalities (radiology score > 2)
were excluded. The remaining infants were then split into two subsets: Subset 1 :
408 participants who were born and scanned between 34 and 45 PMA; Subset 2 :
16 preterm infants who were born before 34 PMA and scanned at term-equivalent
age (> 37 PMA). For language and motor scores prediction, we retained the
scans closest to 40 weeks for neonates scanned twice identified as Subset 3 : 410
infants born between 23 and 43 gestational weeks (GA), with the scaled language
and motor scores are 19.42 (5.26) and 20.55 (3.17), respectively, presented as
mean (SD). We further utilized data from the GPMCH as a Replication dataset,
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Fig. 2. Overview of the proposed Surface Vision Mamba (SiM) architecture.

consisting of 10 neonates to evaluate the generalization ability of the models.
The demographic details are provided in Table 11.

Four cortical surface features (curvature, sulcal depth, cortical thickness and
T1w/T2w myelination) were adopted. Each feature channel was normalized us-
ing Z-score. Subset 1 and 3 were split into training, validation, and testing
datasets in an 8:1:1 ratio. All data were registered to the dHCP 40-week spherical
template, representing the cortical surface as an approximated sphere composed
of triangles, with 32,492 vertices per hemisphere. We resampled the template
sphere to a regular sixth-order icosphere (Ico-6) using barycentric interpolation.

Surface Vision Mamba. We proposed the SiM model, as shown in Fig. 2.
Specifically, the input domain is divided into 2N patches, represented as X̃ =
{L̃, R̃|L̃ ∈ RN×V×C , R̃ ∈ RN×V×C}, that V is the number of vertices in a
patch, and C denotes the number of feature channels. This is then flattened
1 IQR and SD denote interquartile range and standard deviation, respectively. 20 head

circumference data were missed in dHCP. The unit is centimeters.
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Table 2. Summary of the parameters for icospheres of different orders.

Icosphere Order First Second Third Fourth Fifth

The number of patches (N ) 80 320 1280 5120 20480
The number of vertices (V ) 561 153 45 15 6
Input Dimension (VC ) 2244 612 180 60 24
Sequence Length (2N ) 160 640 2560 10240 40960

Table 3. Hyperparameters for all training strategies in PMA prediction. Specifically,
scratch means that training from scratch, fine-tuning refers to using ImageNet pre-
training weights in Vim. For self-supervised pretraining, AR means autoregressive. T,
S, B represent tiny-size, small-size, base-size, respectively.

Scratch Fine-tuning AR Pretraining AR Fine-tuning
T S B T S B T S B T S B

Epochs 1000 600 4000 3000 3000 600
Batch size 32 32 32 32
Optimizer AdamW AdamW AdamW AdamW
Adam ϵ 1e-8 1e-8 1e-8 1e-8
Adam (β1, β2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
LR 5e-5 5e-5 5e-5 3e-5 1.5e-4 1.5e-4 1e-4 8e-5
LR decay Linear Linear Cosine Cosine
Step size 500 200 - -
Gamma 0.5 0.5 - -
Warmup epochs None None 10 10
Weight decay 1e-8 1e-8 0.5 1e-6

to X = {L,R|L ∈ RN×(V C), R ∈ RN×(V C)}. Next, we projected X into D-
dimensional vectors using a trainable fully connected layer. Following the design
of ViT and BERT [4], a learnable class token Xcls is concatenated between
the left and right hemispheres. To retain positional information, standard 1D
position embeddings Epos are added to the patch features.

S0 = [X1
LW ; · · ·XN

L ;Xcls;X
1
RW ; · · · ;XN

R W ] + Epos (1)

where W ∈ R(V C)×D, Epos ∈ R(2N+1)×D, S0 ∈ R(2N+1)×D is the initial input of
SiM, X1

L and X1
R represent the first patches of the left and right hemispheres,

respectively. Specifically, layer l processes the input Sl−1 as follows:

Sl = SiM(Sl−1) + Sl−1, T = LayerNorm(SN
l ), p̂ = MLP (T ) (2)

Surface Patching Methods. We extend the sequence length by progressively
subdividing the icosahedron into finer discrete levels, including first- to third-
order icosphere, as summarized in Table 2. The icosphere subdivision is detailed
in [18]. Different surface patching methods are visually represented in Fig. 1.

Training Methods. In this study, we explore three training strategies: (i)
training models from scratch; (ii) fine-tuning pretrained weights from ImageNet
(as released in Vision Mamba); and (iii) autoregressive pretraining due to the
suitability of the Mamba for autoregressive modeling [14].
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Table 4. Performance comparison on dHCP.

Methods
Supervised Fine-tuning Autoregressive P M

MAE MSE MAE MSE MAE MSE (M) (G)
MoNet 0.64±0.54 0.70±1.37 - - - - - -
S2CNN 0.69±0.45 0.69±0.73 - - - - - -
ChebNet 0.71±0.59 0.85±1.14 - - - - - -
GConvNet 0.86±0.73 1.27±1.91 - - - - - -
PointNet++ 0.67±0.07 0.76±0.10 - - - - - -
Spherical UNet0.72±0.58 0.85±1.31 - - - - - -
HRINet/1 0.75±0.67 1.05±0.05 - - - - 10 -
SiT-Tiny/1 0.79±0.62 1.04±0.42 0.81±0.59 1.37±0.46 - - 6 0.9
SiT-Small/1 0.81±0.57 1.06±0.36 0.87±0.63 0.93±0.28 - - 22 3.6
SiT-Base/1 0.82±0.56 0.98±0.33 0.86±0.74 1.13±0.47 - - 87 14.0

SiM-Tiny/1 0.85±0.64 0.91±0.31 0.76±0.66 1.21±0.26 1.03±0.701.87±0.42 7 1.9
SiM-Small/1 0.87±0.74 1.60±0.38 0.76±0.69 1.55±0.64 1.26±0.832.43±0.20 24 4.2
SiM-Base/1 0.86±0.69 1.20±0.04 0.84±0.63 1.24±0.19 1.06±0.671.34±0.30 92 15.4
HRINet/2 0.62±0.440.39±0.25 - - - - 10 -
SiT-Tiny/2 0.69±0.52 0.47±0.36 0.66±0.58 0.78±0.01 - - 6 3.5
SiT-Small/2 0.67±0.50 0.62±0.11 0.65±0.46 0.65±0.03 - - 22 13.9
SiT-Base/2 0.64±0.57 0.57±0.55 0.72±0.47 0.58±0.20 - - 86 55.0

SiM-Tiny/2 1.09±0.80 2.00±0.22 0.74±0.59 0.98±0.10 1.04±0.772.19±0.65 6 4.7
SiM-Small/2 0.98±0.80 1.89±0.38 0.60±0.49 0.52±0.10 1.12±0.923.50±1.79 24 16.5
SiM-Base/2 0.88±0.66 1.27±0.09 0.74±0.68 0.89±0.15 1.20±0.833.17±1.33 91 61.5
HRINet/3 OOM OOM - - - - 10 -
SiT-Tiny/3 0.60±0.48 0.47±0.16 0.62±0.50 0.53±0.13 - - 6 4.7
SiT-Small/3 0.60±0.51 0.54±0.41 0.60±0.43 0.42±0.16 - - 24 16.5
SiT-Base/3 OOM OOM OOM OOM - - 87 220.9

SiM-Tiny/3 1.09±0.76 2.79±1.30 0.60±0.46 0.85±0.35 0.91±0.813.62±2.73 7 18.9
SiM-Small/3 1.09±0.84 1.78±0.14 0.56±0.500.59±0.04 0.87±0.651.89±0.91 24 66.1
SiM-Base/3 1.03±0.81 2.30±0.73 0.62±0.45 0.65±0.07 1.09±0.712.27±0.76 93 245.5

3 Results and Discussion

Model Variants. The proposed SiM configurations are built upon three vari-
ants of Vim: Vim-Tiny, Vim-Small, and Vim-Base. We adopt concise notations
for model size. For instance, SiM-B/3 refers to the “Base” variant with an input
size of 2560×180, using an Ico-3 grid on the sphere.

Implementation Details. All the experiments are implemented with Python
3.10.13 and PyTorch library and conducted on 4 NVIDIA A100 GPUs. The
Vim-Tiny†, Vim-Small† and Vim-Base weights are adapted that Vim-Tiny† and
Vim-Small† are fine-tuned under long sequence. Training details are in Table 3.

Infant Brain Age Prediction. As shown in Table 42, the comparison results
of SiM against benchmark GDL methods [6,16] and attention-based models [2,20]
on PMA prediction of Subset 1 on the three training strategies. Notably, when

2 Case marked as (’-’) represents unspecified values. (’OOM ’) means out of memory.
Bold intricates the best performance in MAE and MSE, respectively. P denotes
Parameters and M refers to MACs.
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Fig. 3. Prediction performance comparison between SiT and SiM.

Fig. 4. PMA prediction performance and efficiency comparison between SiT and SiM.

fine-tuning with ImageNet pretraining weights, three variants of SiM outper-
form all the GDL methods using an Ico-3 grid. With comparable model param-
eters and MACs, SiM-S/3 achieves a performance of 0.56±0.50, surpassing SiT-
S/3 (0.60±0.43). However, when training from scratch, the performance of all
SiM variants decreased obviously, likely reflecting a tendency to overfit on small
datasets due to the absence of strong prior weights. Although self-supervised pre-
training has been shown to effectively strengthen model performance in previous
studies, this benefit is less evident in our results. Actually, only the SiM-T/3 and
SiM-S/3 exhibit improvements compared with training from scratch. This may
be attributed to overfitting, which hampers generalization, or to the limited
sample size, restricting the ability of model to capture sufficient features. In the
Subset 2, we find that predicted brain age in preterm infants was significantly
lower than chronological age, suggesting that preterm birth may delay brain de-
velopment at term-equivalent age. Besides, we conducted further experiments:

1. Ablation studies on the decoder design in autoregressive pretraining, the
best performance is achieved when the decoder depth is 1 and width is 256.

2. Language and motor scores prediction, which were shown in Fig. 3a and
Fig. 3b, respectively. Generalization validation was displayed in Fig. 3c. The
proposed SiM achieved the best performance compared to other methods.

Long Sequence and Efficiency Analysis. Fig. 4 illustrates the performance
and efficiency of the tiny-sized SiM model across different surface patching meth-
ods. In terms of MAE, SiM slightly outperforms SiT across all other patching
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Fig. 5. Spatial distribution of informative vertices for PMA prediction.

methods except when using an Ico-2 grid, and both models exhibit decreasing
MAE as the icosphere order increases (Fig. 4a). Regarding FPS (Frames Per
Second), SiM is slightly slower than SiT when the icophere order is below 3
but surpasses it as the order increases (Fig. 4b). For GPU memory usage, SiM
exhibits better efficiency with SiT when icosphere orders raises. Notably, when
using an Ico-4 as grid, SiM is 4.8 times faster and consumes 91.7% less GPU
memory compared to SiT (Fig. 4c). All experiments on efficiency analysis are
conducted on a 40G A100 GPU. These results highlight the suitability of SiM
for finer-grained tasks and its potential for practical clinical applications.

Cortical Regions with Significant Contributions to Age Prediction.
We perform sensitive analysis [15] on the test dataset of Subset 1 to evaluate
the contribution of each vertex on cortical surface to brain age prediction, as
illustrated in Fig. 5. For each vertex, we assessed four morphometric features.
“All” nullifies all features, while others nullify one feature at a time per vertex.

The mean performance change for each vertex/feature was computed, nor-
malized using Z-score. The intensity of the hot color signifies the influences of
each vertex/feature. In the right hemisphere, key regions include the temporal
lobe, precentral gyrus, and prefrontal and paracentral cortices. The left hemi-
sphere shows a similar focus on the prefrontal cortex, sensory cortex, language
areas, and parietal cortex when all features or only curvature are masked. Sul-
cal depth complements these findings by emphasizing the temporal lobe, central
sulcus regions, and superior frontal and parietal areas. Cortical thickness and
myelination highlight frontal regions, particularly the anterior insula, rostral
middle frontal gyrus, and orbitofrontal cortex.
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4 Conclusion

In this study, we introduced Surface Vision Mamba (SiM), a novel vision back-
bone with sub-quadratic time complexity, tailored for genus-zero surfaces. We
validated SiM as a more robust and efficient alternative to SiT in the chal-
lenging task of neurodevelopmental phenotype prediction from cortical surface
data. Leveraging the strengths of Mamba in handling long-sequence and autore-
gressive modeling, we extended sequence lengths using various surface patching
methods and conducted autoregressive pretraining. While SiM demonstrated
sensitivity to sequence length, the benefits of autoregressive pretraining were
limited, likely due to constraints of small samples. The use of longer sequences
facilitated finer-grained partitioning, enhancing the ability to identify potential
pathological features critical in clinical applications. Furthermore, SiM offers
faster inference speeds and lower GPU memory consumption, making it both
efficient and practical. Sensitivity analysis also emphasized the interpretability
of SiM, highlighting its potential utility in medical research and applications.
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