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Abstract. Segmenting anatomical structures in medical images plays an
important role in the quantitative assessment of various diseases. How-
ever, accurate segmentation becomes significantly more challenging in
the presence of disease. Disease patterns can alter the appearance of
surrounding healthy tissues, introduce ambiguous boundaries, or even
obscure critical anatomical structures. As such, segmentation models
trained on real-world datasets may struggle to provide good anatomi-
cal segmentation, leading to potential misdiagnosis. In this paper, we
generate counterfactual (CF) images to simulate how the same anatomy
would appear in the absence of disease without altering the underly-
ing structure. We then use these CF images to segment structures of
interest, without requiring any changes to the underlying segmentation
model. Our experiments on two real-world clinical chest X-ray datasets
show that the use of counterfactual images improves anatomical segmen-
tation, thereby aiding downstream clinical decision-making.
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1 Introduction

Anatomical segmentation plays an important role in medical imaging, as it en-
ables precise identification and delineation of organs and tissues, which in turn
plays a pivotal role in treatment planning. For example, accurate lung segmenta-
tion in chest X-ray (CXR) helps in identifying the progression of lung disease and
monitoring response to therapy [11,14]. Recent advances in deep learning have
enabled precise and accurate segmentation of anatomical structures [28,27,18].
However, these methods often struggle in the presence of disease, where ab-
normalities can obscure or alter these structures [27]. For example, pathologic
states, such as pleural effusion, edema, tumour or pneumonia, can alter the ap-
pearance of the lungs, increasing their opacity and making lung segmentation
more difficult.

The ability to remove disease patterns from medical images while preserving
anatomical structures is crucial for improving anatomical segmentation accuracy.
In this work, we explore this possibility using recent advancements in counter-
factual image generation models. Fundamentally, counterfactual (CF) images
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Healthy Subject Subject with Pleural Effusion

Fig. 1: Effect of disease on lung segmentation (red - right lung, green - left lung).
(a-b) Healthy example: segmentation is relatively easy with high similarity be-
tween (a) expert segmentation and (b) automatic segmentation. (c-d) For a
subject with pleural effusion, lungs are partially obscured, and segmentation is
difficult with major differences between (c) expert segmentation and (d) auto-
matic segmentation. Generating the counterfactual ‘pseudo-healthy’ image re-
moves effusion without altering the underlying anatomy, on which (e) automatic
segmentation becomes more similar to (c) expert segmentation.

represent ‘what-if’ scenarios, such as: What would the patient’s chest X-ray look
like if there was no pleural effusion? In this case, the underlying lung struc-
ture should remain unchanged, while the effusion would be removed. This would
lead to a clearer anatomical representation, making lung segmentation easier for
machine learning models (see Fig. 1).

Motivated by this, we propose a framework that leverages counterfactual im-
age generation models to produce pseudo-healthy images from diseased images
and then applies pre-trained segmentors to these counterfactual images. Notably,
our approach does not require re-training the segmentation model, making it di-
rectly compatible with any pretrained segmentator. Our main contributions can
be summarized as: (i) We propose CF-Seg, a novel framework leveraging healthy
CF images, to improve anatomical segmentation in the presence of disease during
inference, without requiring any modifications to the underlying segmentation
model. (ii) We conduct a user study with two expert radiologists – reviewing 300
images each from MIMIC-CXR and PadChest [13,3] – finding that experts pre-
fer lung segmentation generated with CF-Seg in comparison to publicly available
(silver standard) segmentation masks [7]. (iii) We collect “ground-truth” expert
segmentation for 140 images from healthy subjects and subjects with pleural ef-
fusion and find that using counterfactual images improves the lung segmentation
performance substantially in the presence of effusion.

2 Related Work

To improve anatomical segmentation, one popular research avenue consists of
leveraging anatomical knowledge by incorporating shape priors [22,17] or atlas-
based segmentation [21,9,34]. However, these studies mainly focus on improving
anatomical segmentation for healthy subjects without considering the effect of
disease pathology on segmentation performance. On the other hand, in the con-
text of pathology segmentation, methods have been proposed to either directly
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Fig. 2: Overview of the proposed CF-Seg framework. Instead of directly segment-
ing the diseased image, we first obtain a pseudo-healthy CF using a DSCM, and
then use the U-net to obtain the segmentation from this counterfactual.

incorporate anatomical priors in neural networks [12,20]; or use generative mod-
els to synthesize normal pseudo-healthy anatomy and use difference maps to
localize and segment anomalies or pathology [32,36,2]. The latter methods are
closest to our work, as we also use pseudo-healthy images. However, in contrast
to prior work, we specifically focus on anatomy structure segmentation in the
presence of disease rather than on the segmentation of pathology.

Various approaches have been proposed for pseudo-healthy image generation,
including GANs [15,32], VAEs [33,8], and diffusion models [30,1]. However, they
do not explicitly model the underlying causal structure of the generative process.
In this work, we utilize deep structural causal models (DSCMs) that integrate
causal structures with deep generative models [23,19,5]. Specifically, we use a
hierarchical variational auto-encoder (HVAE) based generative model proposed
by Riberio et al. [5] to generate pseudo-healthy counterfactual images, which we
then utilize for downstream segmentation of anatomical structure. Note that in
this paper, we do not focus on proposing a new generative model, but rather
focus on using existing generative models to improve anatomical segmentation.

Counterfactual images have been employed for various medical image analy-
sis tasks and applications, such as data augmentation [10,35], contrastive learn-
ing [29], bias mitigation [16], explainability [6,4], and disease progression model-
ing [25,26]. However, their application for anatomical segmentation in the pres-
ence of disease pathology remains unexplored.

3 Methodology

3.1 Background on Deep Structural Causal Models

A Structural Causal Model (SCM) [24] consists of a set of endogenous variables
X = {Xi}ni=1 (e.g. medical scan, patient age, disease status etc), exogenous vari-
ables U = {Ui}ni=1 (unobserved influences), and a set of functions F = {fi}ni=1

which define causal relationships (e.g. mechanism of disease). Each Xi is de-
termined by its parents pai (direct causes) and an exogenous variable Ui via
a structural equation: Xi := fi(pai, Ui). SCMs enable the estimation of coun-
terfactuals, which represent hypothetical scenarios given observed evidence. For
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example, one may query “What would this patient’s scan look like if there was
no disease?”. Counterfactual inference involves three steps: (i) Abduction: in-
fer the posterior exogenous noise distribution given observed evidence PU|X;
(ii) Action: intervene on one or more of the endogenous variables do(Xi := x),
such as disease status, to obtain a modified SCM Mx; (iii) Prediction: use Mx

and PU|X to generate a counterfactual. Deep SCMs [23,5] (DSCMs) and Neural
Causal Models (NCMs) [31] provide a principled framework for using deep learn-
ing components in SCMs, thereby enabling tractable counterfactual inference of
high-dimensional variables such as images. To estimate counterfactuals of chest
X-rays, we use the Hierarchical Variational Autoencoder (HVAE) based causal
mechanism from [5].

3.2 CF-Seg: Pseudo-healthy counterfactuals for segmentation

We propose a novel anatomical segmentation framework, designed to improve
segmentation quality in the presence of disease pathology. An overview of our
proposed CF-Seg framework is given in Fig. 2. In contrast to the standard
framework, which directly uses U-net [28] for anatomical segmentation from
input images, we incorporate a DSCM-based counterfactual image generation
network [5] prior to anatomical segmentation. Specifically, irrespective of the
subject’s disease status (healthy or diseased), we first generate a pseudo-healthy
counterfactual by intervening on the disease attribute. We then generate the
final anatomical segmentation from this CF using standard U-Net. No changes
are required for the employed segmentation model.

4 Experiments and Results

4.1 Datasets

We use two publicly available CXR datasets, namely, PadChest [3] and MIMIC-
CXR [13]. These are large-scale datasets (more than 100k images) where asso-
ciated image-level labels, such as disease pathology, are derived using a natural
language processing toolbox from the associated reports. No associated anatom-
ical segmentation marking is provided for these datasets. In such cases, we use
the recently published CheXMask [7] database, which provides “silver-standard”
anatomical segmentation boundaries derived using a pre-trained segmentation
neural network, for both these datasets. Note that as these labels are not gen-
erated by an expert radiologist, they might not be reliable (See Sec. 4.3).

4.2 Implementation Details

In this work, we specifically focus on pleural effusion (PE), a disease inducing
visible lung opacities in CXR. We primarily applied our method to lung segmen-
tation in the presence of PE, the disease of interest for our clinical collaborators.
However, any of the many other diseases associated with lung opacities could
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Fig. 3: Preference study results. Experts were shown CheXMask and our CF-
Seg output masks side-by-side and asked to select their preferred segmentation
mask. We here report the percentage of each segmentation method among the
preferred segmentation masks on a total of 300 test images for each dataset.

have been considered, e.g., edema, ARDS, and pneumonia. Here, we restrict the
study to images labeled as ‘no finding’ (NF) – as in healthy – or labeled as
only ‘pleural effusion’ (PE). For PadChest, this leads to a total of 37,612 images
(34,289 NF and 3,323 PE), respectively 62,620 images for MIMIC (56,615 NF
and 6,005 PE). Datasets were split into train/test/valid subsets with a ratio of
70/20/10 for PadChest and 60/30/10 for MIMIC. All images were resized to
224×224 for PadChest and 256×256 for MIMIC.

For the HVAE, we use the same network architecture as proposed by Riberio
et al. [5]. We found that involving multiple variables in the causal graph leads to
better generation performance than only using disease status as the parent for
image generation. As such, for MIMIC, we follow the recommended causal graph
in Riberio et al. [5]; for PadChest, we consider three variables scanner, sex, and
disease, assuming they are independent. In terms of the segmentation network,
we follow the U-Net architecture [28] and utilize the segmentation masks pro-
vided by CheXMask to train the network. During inference time, we utilize this
trained U-Net as a part of our proposed CF-Seg framework (See Fig. 2).

4.3 Experiment-1: Preference study

We first conducted a preference study with two different expert doctors (one for
each dataset) with 7 years of experience. Specifically, they were asked to choose
their preferred segmentation for a specific image. Two available options were (i)
the segmentation from CheXMask (‘silver standard’), and (ii) the segmentation
generated by our CF-Seg method. For this experiment, we randomly selected
150 healthy (NF) and 150 PE images from each dataset. Experts were shown
the same image with two different segmentations side-by-side (without revealing
which one is which), and were asked to select their preference. We also randomly
changed the order (left or right) of these segmentations to make sure that the
selection was not biased towards one or another.

From the results plotted in Fig. 3, we can observe that for both datasets, for
healthy patient images (No-Finding), experts only marginally prefer the segmen-
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Fig. 4: For (Top) MIMIC and (Bottom) PadChest, density plots of lung volumes
for left-, right- and both-lungs, measured by different segmentation methods.

tation provided by CheXMask over CF-Seg. This is expected as the underlying
U-Net network was trained using CheXMask. On the contrary, for more than
70% of Pleural Effusion images, experts prefer segmentation provided by CF-
Seg in comparison to CheXMask. This validates the usefulness of our proposed
framework in clinical applications.

4.4 Experiment-2: Comparison against expert segmentations

Next, we obtain “ground-truth” lung segmentations manually drawn by expert
doctors, henceforth known as expert segmentation (Expert). Specifically, we ran-
domly chose 50 PE images and 20 healthy (NF) images from each dataset. PE
test images include images with multiple findings (e.g., PE + cardiomegaly),
to verify the robustness of CF-Seg in the presence of other findings. For each
dataset, one expert marked lung boundaries. For healthy images, the Dice score
between CheXMask labels and the Expert was more than 0.95, while for PE
images, it was around 0.87. These results corroborate our findings from Sec. 4.3,
reiterating that CheXMask labels are clinically useful for healthy subjects only,
while for subjects with PE, they might not be reliable.

To assess the clinical value of generated segmentation maps, we first compare
lung volumes extracted from different segmentation maps. Specifically, (i) Expert
annotations, (ii) CheXMask (silver standard), (iii) predictions from a U-Net
trained on CheXMask data, (iv) our CF-Seg framework, where we first generate
the pseudo-healthy CF, then use it to generate the segmentation maps (using
the same U-Net as in (iii)). In Fig. 4, we visualize kernel density estimate (KDE)
plots of lung volume distribution on PE images, for both datasets. This figure
reveals that for both datasets, CF-Seg follows the distribution of Expert more
closely compared to the U-Net or CheXMask labels. Both CheXMask and U-Net
undersegment lungs in comparison to the Expert, while that is not the case for
the CF-Seg. We also observe that the volume difference between Expert and
CheXMask is more prominent for the right lung compared to the left lung. We
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Table 1: Performance measured as mean Dice coefficient (%) between Expert
and CF-Seg/U-Net for right lung, left lung, and both lungs together. P-values
between U-Net and CF-Seg are ≤ 0.05 for the right lung (column 1) and both
lungs (column 3), while this is not the case for the left lung (column 2). All
reported results are for 50 PE images only.

Dataset Method Right Lung Left Lung Both Lungs

All ∆V + All ∆V + All ∆V +

MIMIC U-Net 89.16 85.86 91.47 91.11 90.30 87.45
CF-Seg 90.57 88.52 91.49 92.13 91.05 90.03

PadChest U-Net 89.53 84.71 91.43 91.96 90.52 87.87
CF-Seg 90.64 88.83 91.62 92.37 91.20 90.31
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Fig. 5: Qualitative comparison of lung segmentation masks generated by different
methods for two examples from (Top) MIMIC and (Bottom) PadChest. Left-
to-Right: CheXMask, Expert, U-Net, CF-Seg (on original image), and CF-Seg
overlaid on pseudo-healthy CF. It is clearly visible that in the case of pathol-
ogy, CheXMask undersegments lungs (especially the right lung shown in red) in
comparison to Expert. The U-Net generates masks similar to CheXMask, while
CF-Seg outputs are much closer to the masks of Expert.

hypothesize that this might be because the heart obscures a larger part of the
left lung compared to the right lung, and as such, the effect of pleural effusion
might be easier to observe in the right lung.

Next, we measure Dice scores between Expert and CF-Seg as well as U-Net.
For each dataset, we report the average Dice score on the corresponding test set
(50 images). In addition, we report Dice scores for images with a positive volume
difference between Expert and CheXMask labels (∆V +), as these represent un-
dersegmented cases (more than 35) which have been corrected by experts. This
enables us to assess the benefit of CF-Seg in cases where experts disagree the
most with CheXMask. In Table 1, we can see that CF-Seg improves performance
in all cases. We find that the difference in performance is more prominent for right
lung segmentation, especially on ∆V + images. This is expected as there was a
higher volume difference (and as such, more correction) between CheXMask and
Expert for the right lung compared to the left lung. This is also clearly visible in
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Fig. 6: Comparison of right lung volume density plots measured by different
segmentation methods between healthy subjects (no finding) and subjects with
pleural effusion. (Top) MIMIC and (Bottom) PadChest dataset.

the qualitative results presented in Fig. 5. Crucially, comparing the performance
of U-Net and CF-Seg, these results demonstrate that applying pseudo-healthy
counterfactuals prior to segmentation improves anatomical segmentation sub-
stantially, without making any changes to the underlying segmentation model.

4.5 Experiment-3: CF-Seg evaluation on large-scale datasets

In this section, we aim to evaluate the proposed CF-Seg on the full test sets
from MIMIC and PadChest (see Sec. 4.1). However, no ground truth annota-
tions are available for these sets, and obtaining manual annotations for such
large sets (>5k) is infeasible in practice due to the burden on experts. Hence,
we utilize a proxy method to evaluate segmentations by comparing volume den-
sity plots between healthy (NF) and disease images (PE). We hypothesize that
irrespective of the disease stage (NF or PE), lung volume density across the
whole population should remain similar. From Fig. 6, we observe that right lung
volume density plots between NF and PE patient images overlap considerably
for CF-Seg, while that is not the case for CheXMask and U-Net. The difference
in mean volume between PE and NF, for CheXMask (MIMIC: 859, PadChest:
1177) and U-Net (MIMIC: 893, PadChest: 1189) is comparatively higher than
CF-Seg (MIMIC: 398, PadChest: 306). This shows that CF-Seg is better able to
segment underlying true anatomy compared to either CheXMask or U-Net.

5 Conclusion

We proposed CF-Seg, a general counterfactual segmentation framework for im-
proving anatomical segmentation in the presence of disease pathology. This
framework was motivated by the fact that obtaining accurate anatomical seg-
mentations in the presence of disease is challenging, as abnormalities can ob-
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scure or alter anatomical structures. Our two-stage approach employed coun-
terfactual generative modeling to first infer pseudo-healthy counterfactuals of
medical scans, which are then utilized to more easily segment the structure of
interest. We conducted extensive experiments using two large publicly avail-
able CXR datasets, namely MIMIC and PadChest, and found that, on im-
ages with pleural effusion, our counterfactual lung segmentations are more ac-
curate and consistently preferred by experts in a user study, despite being
trained only on “silver-standard” undersegmenting segmentation masks. Our
results underscore the potential of counterfactual inference for broader clini-
cal applications. We make our code and segmentation masks publicly available:
https://github.com/biomedia-mira/CF-Seg.
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