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Abstract. Although computer-aided diagnosis (CADx) and detection
(CADe) systems have made significant progress in various medical do-
mains, their application is still limited in specialized fields such as otorhi-
nolaryngology. In the latter, current assessment methods heavily de-
pend on operator expertise, and the high heterogeneity of lesions com-
plicates diagnosis, with biopsy persisting as the gold standard despite
its substantial costs and risks. A critical bottleneck for specialized en-
doscopic CADx/e systems is the lack of well-annotated datasets with
sufficient variability for real-world generalization. This study introduces
a novel approach that exploits a Latent Diffusion Model (LDM) cou-
pled with a ControlNet adapter to generate laryngeal endoscopic image-
annotation pairs, guided by clinical observations. The method addresses
data scarcity by conditioning the diffusion process to produce realistic,
high-quality, and clinically relevant image features that capture diverse
anatomical conditions. The proposed approach can be leveraged to ex-
pand training datasets for CADx/e models, empowering the assessment
process in laryngology. Indeed, during a downstream task of detection,
the addition of only 10% synthetic data improved the detection rate of
laryngeal lesions by 9% when the model was internally tested and 22.1%
on out-of-domain external data. Additionally, the realism of the gener-
ated images was evaluated by asking 5 expert otorhinolaryngologists with
varying expertise to rate their confidence in distinguishing synthetic from
real images. This work has the potential to accelerate the development
of automated tools for laryngeal disease diagnosis, offering a solution to
data scarcity and demonstrating the applicability of synthetic data in
real-world scenarios1.

Keywords: Data Synthesis · ControlNet · Endoscopy · Lesion Detection

1 We publicly share our code at https://github.com/ChiaraBaldini/endoLDMC.git

https://github.com/ChiaraBaldini/endoLDMC.git
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1 Introduction

Medical imaging is evolving due to the emergence of Computer-aided Diagno-
sis and Detection (CADx/e) systems, which enable more accurate diagnoses
by using deep-learning algorithms to assist clinicians in identifying pathological
patterns in medical images. Domains such as radiology, oncology, and general en-
doscopy benefit from large well-annotated datasets, driving significant improve-
ments [6, 7, 20, 24]. However, in specialized domains like laryngology, the appli-
cation of such systems remains limited, primarily due to the lack of annotated
data. While some public laryngology datasets exist, their annotations are often
tailored to specific, narrow tasks, such as evaluating video frame quality [14],
analyzing vocal cord mobility [2, 12], performing semantic segmentation [9], or
classifying lesions [21]. Moreover, these datasets are typically acquired from a
single clinical center and fail to capture the full spectrum of possible laryngeal
lesions. This insufficient diversity in data representation and annotation severely
limits their applicability in real-world clinical settings, where broader anatomi-
cal and pathological variability is required to address complex diagnostic tasks.
Although the availability of annotated datasets remains limited, the need for
CADx/e tools in laryngology is becoming more evident. This demand is driven
by the operator-dependent nature of current diagnostic methods and the incon-
sistency introduced by subjective assessments. While techniques such as Narrow
Band Imaging (NBI) [19] have been introduced to improve the visualization
of neoangiogenic changes, their effective use relies on sophisticated endoscopic
systems and significant operator expertise. Recently published studies have at-
tempted to develop algorithms for detecting, classifying, and segmenting laryn-
geal lesions [18]. Nevertheless, only a small portion of them have tested model
reliability and robustness on external populations and validated the applicability
in the clinical environment due to diverse data scarcity.

Synthetic data generation techniques have become increasingly used by re-
searchers to augment existing datasets and overcome issues related to variability
limitations. Recent advances in generative models, such as Generative Adversar-
ial Networks (GANs) and Variational Autoencoders (VAEs), have demonstrated
remarkable success in producing realistic synthetic images for medical domains,
including general endoscopy [3,4,10,11,13,15,22]. To the best of our knowledge,
no studies have explored the synthesis of images for laryngeal lesion diagnosis.
The complex anatomical and pathological characteristics of the laryngeal region
make it a particularly challenging area for synthetic approaches, requiring ad-
vanced generative models to produce clinically relevant images that capture its
inherent variability. One approach to ensuring the clinical relevance of synthetic
data is to condition the generation process on clinical observations, such as ac-
quisition parameters or spatial information of the lesion. Furthermore, how to
maximize the potential of synthetic data by optimally selecting them to improve
downstream task performance is rarely explored.

This study addresses the previously identified challenges through the follow-
ing contributions:
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1. Generation of synthetic laryngeal endoscopic image-annotation pairs by lever-
aging Latent Diffusion Models (LDMs) conditioning by clinical observations.

2. Proposing a synthetic data selection mechanism to improve the performance
of a downstream lesion detection task.

3. Validation of the realism of the generated images through a human-observer
study.

2 Methods

2.1 Laryngeal datasets

Laryngeal endoscopic images of different resolutions were collected independently
from two hospitals2 (2014–2023) during routine practice, using flexible or rigid
endoscopes3 in White-Light (WL) and NBI modes. The first medical center
involved in the data collection was the Otolaryngology-Head and Neck Unit of
the Oncologic Hospital Saint Savvas (Athens, Greece), providing a total amount
of 909 laryngeal images, termed as internal in the following as they were used
for training and internal validation of the LDM and the subsequent downstream
task. The second center was the Otolaryngology-Head and Neck Unit of the
IRCSS Hospital San Martino (Genova, Italy), where 88 images were extracted
from video laryngoscopies. This external dataset was considered only for the
validation of the downstream task. Each image was labeled with a bounding
box that encompassed the surface of each lesion and a class associated with the
type of lesion – cyst, granuloma, leukoplakia, polyp, papilloma, Reinke’s edema,
squamous cell carcinoma –, according to histopathological confirmation or expert
consensus. Such annotations were carried out by expert otorhinolaryngologists
at each center and revised by two other experts at the IRCSS Hospital San
Martino.

2.2 Clinically-guided Latent Diffusion Model

The proposed method generates synthetic images using a Latent Diffusion Model
(LDM) for realistic reconstruction and a ControlNet module to preserve clinical
relevance.

Latent Diffusion Model A Diffusion Model (DM) progressively perturbs the
observed data distribution, x0, by gradually adding Gaussian noise (ϵ ∼ N (0, 1))
until it converges to a given prior xt. This process is known as diffusion. It then
learns a reverse diffusion process (ϵθ) to reconstruct and restore the original data,
starting from this prior distribution and gradually produces less noisy samples
xt−1, xt−2, . . . , until reaching the final sample x0. The loss function can be
written as:

LDM (θ) = Ex0,ϵ∼N (0,1),t∼U [1,T ]

[
∥ϵ− ϵθ(xt, t)∥22

]
. (1)

2 For each center, the local Institutional Ethics Committee approval was obtained.
3 Olympus Medical System Corporation, Tokyo, Japan
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Fig. 1: Overview of the proposed method. During training (white arrow path), a
caption with information on the optical modality, the lesion type, and the mask
of the annotated bounding boxes were used as inputs to control the learning
process of a Latent Diffusion Model (LDM). Realistic synthetic images were
generated in the inference step (red arrow path), under the guidance of captions
and masks, to enhance the performance of a downstream detection task.

The core concept of LDMs is to apply the diffuse and reverse diffusion pro-
cesses in the low dimensional latent feature space of the inputs (zt), resulting in
reduced complexity [16]. The input image (x0) is fed through an encoder, that
outputs a latent vector z0. For T iterations, a diffusion process adds noise to zt,
and then a denoising process is carried out through a UNet denoiser model. In
the last part, a decoder converts the restored latent signal (z0) back to a clean
signal in the original image space. The loss can be modified as follows:

LLDM (θ) = Ez0,ϵ∼N (0,1),t∼U [1,T ]

[
∥ϵ− ϵθ(zt, t)∥22

]
. (2)

In this work, pre-trained autoencoder and text encoder models [16] were used
following a transfer learning strategy to speed up the LDM training process.

ControlNet ControlNet [23] is an extended module that can be added to dif-
fusion models to enable fine-grained control over the image generation process
by incorporating additional conditioning inputs. The integration of extra infor-
mation — such as edge, depth, or segmentation masks - allows the model to
generate data that maintains the overall realism provided by the LDM but re-
spects closely the structural or semantic indications of the conditioning signal.
This level of control is even more critical in the medical field, especially when
replicating pathological conditions, where the structural and spatial character-
istics of abnormalities are key factors for clinical interpretation. We integrated
detailed observations derived from clinical practice into ControlNet, learning
patterns between laryngeal lesions and expert annotations, while also parsing
biopsy results. Hence, our approach allows the creation of synthetic images that
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contain clinically relevant features. In particular, we decided to pass two differ-
ent inputs to the ControlNet module. An image caption containing notes about
the optical modality used for the acquisition – WL or NBI – and the class of
the laryngeal lesion annotated by our clinical partners was provided as the first
control condition. An example of a caption is shown in Fig. 1: “A white-light
endoscopic image of a larynx with the presence of a polyp.” In addition, a mask
of the annotated bounding boxes was included in the conditioning process to
provide information about the location of lesions. During inference, the model
takes random noise as input and generates a new synthetic endoscopic image
of a larynx, having the characteristics of the optical modality specified in the
provided caption, with the specific type of lesion located in the desired area of
the image.

Implementation details To train the LDM model with ControlNet, the in-
ternal dataset was split into three subsets with a ratio of 80:10:10, resulting in
727 images for training, 91 for validation, and 91 for testing. For each image,
a 3-channel mask of the bounding box was obtained starting from the coor-
dinates annotated by experts in YOLO format. A caption was also generated
manually as a text prompt for each image, considering the class of the lesion
and the modality information from clinical notes, as previously explained. Ini-
tially, the LDM model was fine-tuned for 100 epochs, with a batch size of 4,
an initial learning rate of 0.00005, and an image resolution of 640 × 640 pixels
to generate realistic laryngeal images. Then, while freezing the LDM’s weights,
the ControlNet module was integrated and fine-tuned with the same parameters
as the previous step, to control lesions’ location and appearance. To test the
generalization ability of the LDM, 727 new masks were created via random rota-
tions and scaling operations of those of the internal dataset, and were utilized,
together with the corresponding captions, to generate a larger set of diversified
synthetic images, using ControlNet conditioning and guidance scales empirically
set to 1.0. We ran all the experiments using an NVIDIA A100 GPU with 80GB
of memory.

2.3 Evaluation metrics

Our goal is to generate diverse, clinically relevant synthetic images distinct from
the originals to enrich CADx/e training datasets. An evaluation metric that
computes the similarity between the distributions of real and generated images,
such as the Fréchet Inception Distance (FID) [8], does not fully align with our
objectives and may undervalue the contribution of clinically diverse synthetic
data. For those reasons, we evaluated the proposed method with the FIDratio [15],
considering the FID between real and synthetic samples (FIDrs) relative to the
natural variability in real data (FIDrr), which produced a high FID value due
to diversity. It was calculated as FIDratio = 1− (FIDrs − FIDrr)/FIDrs. The
Inception Score (IS) [17] was also computed to evaluate data diversity compared
to real images. Moreover, two other approaches were adopted to analyze the
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advantages of the synthetic images and validate their quality, as detailed in the
following.

Downstream task We explored the practical utility of the generated syn-
thetic data by augmenting the available internal laryngeal dataset. Specifically,
we combined the synthetic images with the real ones to train a lesion detection
model that can learn to handle a wider variety of cases, improving its robustness.
As lesion detector, we utilized the pre-trained YOLOv8 nano model from the Ul-
tralytics GitHub repository4. This model is identical to the one currently in use
in a hospital that collaborates with our team, and was chosen due to its capability
of working efficiently in real-time. We trained the detector for 100 epochs, first
only with the real images of the internal dataset and then gradually added 5%,
10%, 20%, 40%, and 80% synthetic samples. Taking into account the percentage
that achieved the best results, we carried out a 3-fold cross-validation by repeat-
ing the detection learning process with 3 different sets of synthetic data and the
same real set. However, as demonstrated by the cross-validation experiment, the
random selection of synthetic samples can slightly impact performance variabil-
ity. To address this issue, we defined an Uncertainty Estimation (UE) strategy
for extending the training dataset with “challenging samples” identified through
detection prediction uncertainty. Considering the 3 models from cross-validation,
detection predictions were obtained for all synthetic data. The variance between
the confidence scores returned by the 3 models was calculated for each image.
After sorting the samples in descending order of variance, only the top 10% were
selected, as they represent the most “challenging samples” to detect. For all the
experiments, we applied the AdamW optimizer, an early-stopping strategy of 50
epochs, a batch size of 32, an initial learning rate of 0.001, and the default data
augmentation. The detection performance was tested - in terms of precision, re-
call, and Average Precision@IoU=0.5 (AP@IoU=0.5) - both on the internal test set
and on the unseen external data.

Human-observer study We conducted a clinical investigation about the qual-
ity of the images by selecting a subset of 20 images, 10 real and 10 synthetic, and
asking 5 of our clinical collaborators, with 7, 6, 11, 6, and 8 years of experience, to
blindly rate the realism on a “Likert” scale from “strongly disagree” to “strongly
agree” concerning the sentence “This is a REAL image”. We assigned probability
values to each possible vote, with the aim of computing the Area Under the ROC
Curve (AUC) of each user and evaluating their accuracy in correctly identify-
ing real samples. In particular, the “Likert” scale - [Strongly disagree, Disagree,
Slightly disagree, Slightly agree, Agree, Strongly agree] - was translated into the
following probability values: [0.05, 0.23, 0.41, 0.50, 0.77, 0.95] [1, 5].

4 https://github.com/ultralytics
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3 Results and Discussion

3.1 Generating images and annotations pairs

Fig. 2: Starting from real images (1st column), a caption containing relevant
clinical information (2nd column) and the manual-annotated mask of the lesion
bounding boxes (3rd column) were used to generate new samples (4th column).

Fig. 2 presents qualitative results of the image generation process, highlight-
ing the ability of our method to produce realistic laryngeal images. The gen-
erated data reflect variations in vocal cord anatomy, including different lesion
types – squamous cell carcinoma, cyst, leukoplakia – and acquisition settings –
WL, NBI –, emphasizing the model’s capacity to reconstruct complex and di-
verse patterns. As shown in cases (c) and (d) of Fig. 2, we observed that the
same mask can be associated with diverse synthetic outputs by using different
captions. The FIDratio metric was 0.836 as the difference between the FIDrs
and FIDrr was small, while the IS was 3.840 ± 0.270 for real samples and 4.240
± 0.270 for synthetic data, with both metrics confirming a high variety of the
synthetic data.

3.2 Improving detection by adding synthetic images

In Fig. 3a, we present the results of the downstream detection task. When test-
ing on both the internal and external test sets, the introduction of synthetic
data resulted in average performance improvements. On the internal test set,
AP@IoU=0.5 peaked at 0.895 with 10% synthetic data, after which the perfor-
mance reached a plateau. The performance trend of the external test matched
the expectation, indicating that the highest performance could be reached with
the addition of 10% synthetic data. However, the performance values fluctuate
more due to inherent differences between training and test data. The advantage
of adding the 10% of randomly selected synthetic data was further confirmed by
the results of the 3-fold cross-validation (Table 1), with an average AP@IoU=0.5
increment regarding the use of only real data of +8.2% and +16.0% for internal
and external tests, respectively. Nevertheless, the highest performance was ob-
served with the uncertainty-based selection strategy, i.e. +9.0% and +22.1% for
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internal and external AP@IoU=0.5, respectively, meaning that extending the ex-
isting dataset with “challenging samples” can substantially improve the model’s
ability to detect hard and diverse lesions and to generalize on unseen images.

3.3 Real versus synthetic: human-observer study

(a) (b)

Fig. 3: (a) Evolution of the Average Precision@IoU=0.5 by gradually adding ran-
domly selected (fold 1) synthetic images to the training dataset and testing the
performance both internally and externally, showing peaks at + 10% synthetic
samples. (b) Votes from otorhinolaryngologists assessing the realism of images,
with confidence levels represented on the vertical axis and marker colors indi-
cating whether the classification of images as real or synthetic was correct.

In Figure 3b, the responses of the enrolled otorhinolaryngologists were dis-
played in green for each correct real or synthetic image identified and red for

Table 1: Analysis of the impact of adding 10% synthetic data to the real training
dataset, either randomly selected or based on the Uncertainty Estimation (UE)
strategy.

Train dataset Internal test External test

Precision Recall AP@IoU=50 Precision Recall AP@IoU=50

Real 0.761 0.763 0.798 0.498 0.376 0.359

Real+10% synthetic

Random selection (fold 1) 0.848 0.851 0.895 0.614 0.526 0.526

Random selection (fold 2) 0.828 0.889 0.900 0.660 0.463 0.518

Random selection (fold 3) 0.809 0.789 0.846 0.631 0.468 0.515

Mean±std 0.828±0.016 0.843±0.041 0.880±0.024 0.635±0.019 0.485±0.028 0.519±0.004

Top uncertain selected 0.905 0.833 0.888 0.800 0.464 0.580
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incorrect answers. On the y-axis, the predictions were discriminated by the con-
fidence level of the user’s answer. Among all users, the AUC and accuracy val-
ues were 0.507±0.095 and 0.670±0.129, respectively. Indeed, we can empirically
affirm the realism of the synthetic data as clinicians struggled to recognize syn-
thetic samples, often classifying them as real cases.

4 Conclusion

This study introduced an LDM and ControlNet-based framework for generating
synthetic laryngeal image-annotation pairs, pioneering data generation in laryn-
gology. We showed that the addition of challenging synthetic samples determined
via uncertainty estimation improves lesion detection, and successfully validated
the clinical realism of generated samples through expert reviews. Future work
will further improve generation diversity, optimize sample selection and lesion-
specific synthesis in privacy-preserving settings, and evaluate the utility of syn-
thetic data for other tasks like lesion classification.
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