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Abstract. Accurate 3D reconstruction of dynamic surgical scenes from
endoscopic video is essential for robotic-assisted surgery. While recent
3D Gaussian Splatting methods have shown promise in achieving high-
quality reconstructions with fast rendering speeds, their use of inverse
depth loss functions compresses depth variations. This can lead to a
loss of fine geometric details, limiting their ability to capture precise
3D geometry and effectiveness in intraoperative applications. To ad-
dress the limitations of existing methods, we developed SurgicalGS,
a dynamic 3D Gaussian Splatting framework specifically designed for
improved geometric accuracy in surgical scene reconstruction. Our ap-
proach integrates a temporally coherent multi-frame depth fusion and an
adaptive motion mask for Gaussian initialisation. Besides, we represent
dynamic scenes using the Flexible Deformation Model and introduce a
novel normalized depth regularization loss and an unsupervised depth
smoothness constraint to ensure high geometric accuracy in the recon-
struction. Extensive experiments on two real surgical datasets demon-
strate that SurgicalGS achieves state-of-the-art reconstruction quality,
especially in precise geometry, advancing the usability of 3D Gaussian
Splatting in robotic-assisted surgery. Our code is available at https:
//github.com/neneyork/SurgicalGS.

Keywords: 3D Reconstruction · Surgical Scene reconstruction · 3D
Gaussian Splatting.

1 Introduction

3D reconstruction of surgical scenes is an important element of robotic-assisted
surgery. By creating a 3D model of the observed tissues, it allows for more
precise instrument control, enabling a range of downstream applications such as
intraoperative navigation [9, 16], robotic surgery automation [8, 10, 17, 26], and
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virtual reality simulation [4]. Traditional methods estimate depth with stereo
matching [19, 27] or combine simultaneous localization and mapping (SLAM)
to fuse depth maps for surgical scene reconstruction [19, 27, 28]. However, these
methods either assume that scenes are static or surgical tools are absent, limiting
their effectiveness in intraoperative applications.

Neural Radiance Fields (NeRF) [15] show significant progress in scene recon-
struction with implicit representations. This technology leverages volume render-
ing [5] to convert 2D images to 3D scenes. However, the original NeRF method
suffers from long training times, low rendering speed, and a lack of explicit ge-
ometric representation [3]. Although some methods adapt discrete structures,
such as planes [2] and voxel grids [6], to reduce training time from days to min-
utes, rendering speed remains insufficient for practical use in surgical scenarios.

Recently, 3D Gaussian Splatting (3DGS) [11] can represent scenes as an
explicit 3D Gaussian model, significantly improving the rendering speed to real-
time. Many methods [14,24] have extended 3DGS to surgical scene reconstruction
and demonstrated satisfactory results. However, they fail to capture the precise
3D geometry, which limits their effectiveness in intraoperative use. To address
these limitations, we focus on two key questions for reconstructing dynamic sur-
gical scenes: (i) How can depth priors be effectively utilized to initialize Gaussian
points? (ii) How can depth priors be leveraged to provide accurate depth con-
straints in dynamic scenes?

In this paper, we propose a new method for accurately reconstructing the
dynamic surgical scene, namely SurgicalGS. We first integrate a temporally
coherent multi-frame depth fusion framework to reveal tissues, combined with
an adaptive motion masking that jointly suppresses depth noise and transient
artifacts during the Gaussian initialization. Then, Flexible Deformation Mod-
eling [24] is adopted to represent dynamic scenes. To further enhance depth
supervision, we introduce a normalized depth regularization loss and a depth
smoothness constraint to ensure accurate geometric reconstruction. We evalu-
ated our method on two public datasets, EndoNeRF [22] and StereoMIS [7].
Extensive experiments demonstrate the efficacy of our approach, achieving supe-
rior geometry accuracy (RMSE: 1.820 mm) and reconstruction quality (PSNR:
38.18).

2 Methodology

2.1 Preliminaries

3D Gaussian Splatting 3DGS [11] uses a differentiable Gaussian represen-
tation to model static scenes, allowing for rapid rasterization and fast image
rendering. Each 3D Gaussian consists of learnable attributes: position µ, rota-
tion r, scaling s, opacity o, and spherical harmonic (SH) coefficients. For any 3D
point x in world coordinates, the impact of a 3D Gaussian on x is defined by
the Gaussian distribution:

G(x) = exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (1)
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Fig. 1. Proposed framework. Starting from an image and depth sequence, we asso-
ciate 3D points between frames to initialize the Gaussian point cloud. Then, given a
specific time t, the attributes of the Gaussians are modified by the deformation model
and rendered as a 2D image and depth map. Finally, color and depth loss are employed
to refine results.

Σ = RSSTRT, (2)

where Σ is the covariance matrix, R is a rotation matrix, and S is a diag-
onal scaling matrix. Then, the 3D Gaussian is projected onto the 2D image
planes for rendering. The covariance matrix after projection is calculated by
Σ′ = JWΣWTJT , where J is the Jacobian of the affine approximation of the
projective transformation and W represents the viewing transformation matrix.
The final rendering equation for the color Ĉ(x) and the depth D̂(x) of the pixel
x is:

Ĉ(x) =
∑
i∈N

ciαi

i−1∏
j=1

(1− αi), D̂(x) =
∑
i∈N

diαi

i−1∏
j=1

(1− αi), (3)

αi = oiG
2D
i (x), (4)

where ci is the color defined from the SH coefficients, di is the z-axis in the
camera coordinate, and αi is the density calculated by multiplying the projected
3D Gaussian with the opacity oi.

Dynamic Representation Following [24], we further represent the dynamic
surgical scene using a deformation field, where Fourier and polynomial basis
functions b̃(t; θ, σ) are utilized to learn the motion curve of each Gaussian:

b̃(t; θ, σ) = exp

(
− 1

2σ2
(t− θ)2

)
, (5)

where t represents time, and θ and σ denote the learnable center and variance,
respectively. Each Gaussian is associated with a set of learnable weights ω and
parameters Θµ, Θr, and Θs. These weights and parameters linearly combine
the basis functions to represent deformations of position, rotation, and scale,
respectively. Taking the position change along the x-axis for an illustration, the



4 J. Chen et al.

deformation can be expressed with a set of parameters Θµ
x = {ωµ

x , θ
µ
x , σ

µ
x} as:

ψµ,x(t;Θµ,x) =

B∑
j=1

ωµ,x
j b̃(t; θµ,xj , σµ,x

j ). (6)

The x-axis position at time t can be expressed as:

µx(t) = µx(t) + ψµ,x(t). (7)

2.2 Proposed Method: SurgicalGS

Our proposed SurgicalGS integrates geometric information from all frames for
dense Gaussian initialization to recover tissues occluded by tools and improve
reconstruction quality. Additionally, it employs normalized depth loss and unsu-
pervised depth smoothness to enhance the accuracy of geometric reconstruction.

Dense Initialization with Depth Priors The original 3DGS [11] used the
SfM algorithm [18] to generate initialized point clouds for further reconstruc-
tion. However, due to limited viewpoints, dynamic lighting conditions, and tool
occlusions in surgical environments, SfM cannot generate accurate point clouds
in surgical scenes. Thus, we employ the depth map, tissue mask, and camera
parameters to extract point clouds of tissues for each frame as:

Pi = K−1
1 K−1

2 Di(Ii ⊙Mi), (8)

where Pi denotes the 3D point cloud of the i-th frame, and Di, Ii, and Mi repre-
sent the depth map from stereo-matching, input image, and binary tissue mask
for the i-th frame, respectively, K1 and K2 refer to the known camera intrinsic
and extrinsic matrices, respectively, and ⊙ denotes element-wise multiplication.
However, the point cloud is incomplete due to surgical tool occlusions. We ob-
serve that the occluded tissue in the i-th frame could be visible in some of the
other frames. Furthermore, a dense initialization of the Gaussian point cloud
can more accurately represent the scene [11], leading to improved reconstruction
quality for deformable tissues. Based on these observations, we design an adap-
tive motion mask Bi, that extracts pixels with significant depth variation and
occluded tissues, to suppress depth noise and transient artifacts:

Bi = I (|D0 −Di| > τ) ∪ (1−M0) ∩Mi, (9)

where I(·) refers to the indicator function, M0 denotes the tissue mask of the
first frame, and τ is an adaptive threshold, that is controlled by the depth map
range, to define the significant depth variation. We uniformly downsample the
point clouds to reduce the number of points and fuse them to initialize the
Gaussian point cloud as follows:

P = {P0, P1 ⊙B1, ..., PT ⊙BT }, (10)

where T refers to the frame length.
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Normalized Depth Regularization To ensure accurate alignment between
the predicted and actual depth maps, depth regularization is applied to supervise
the 3D reconstruction learning process. A common approach is to use L1 depth
loss. However, in dynamic scenes, we observe that directly applying L1 depth
loss results in an overly dense Gaussian point cloud, causing memory overflow
and instability in training.

Previous methods [14,24] incorporate inverse depth maps into the loss com-
putation, effectively stabilizing the optimization process. However, inverse depth
maps compress the dynamic range of depth values, reducing the disparity be-
tween the binocular and rendered depth maps. This compression minimizes the
risk of over-density and enhances the stability of the optimization process. How-
ever, there is little variation in the depth map in endoscopic videos. Using inverse
depth maps can overly homogenize the depth values, resulting in inaccurate and
inconsistent rendered depth maps.

Our observation is that normalization can bring both binocular and rendered
depth maps on a consistent scale, ensuring training stability while preserving
depth variability. Our normalized depth loss is formulated as:

LD̂ = ∥M ⊙ (D̂norm −Dnorm)∥. (11)

Unsupervised Depth Smoothness In surgical scenes, specular highlights,
homogeneous surfaces, and large disparity discontinuities make it difficult for
stereo-matching algorithms to establish accurate correspondences, leading to
noise in the depth maps [20]. To remove the influence of noise and enforce the
smoothness of the rendered depth, we employ a total variation loss. In addition,
to preserve depth details, we apply the Canny edge detector [1] as a mask to pre-
vent the regularization of edges with significant depth variations. We regularize
the difference between a pixel D̂i,j in depth map and its adjacent pixel as:

Lsmooth =
1

|D̂|

∑
i,j

Ine(D̂i,j) ·
(
|D̂i,j − D̂i+1,j |+ |D̂i,j − D̂i,j+1|

)
(12)

where Ine(D̂i,j) is the result of Canny edge detection indicating whether the
pixel (i, j) is on the edge.

Total Loss Function The final loss for optimization is defined as:

L = Lcolor +
(
LD̂ + λsmoothLsmooth

)︸ ︷︷ ︸
Ldepth

(13)

where Lcolor is the original photometric loss in 3DGS [11].

3 Experiments

3.1 Experiment Setting

Dataset and Evaluation Metrics We evaluate the proposed method and
compare it with existing methods on two public datasets: (i) the EndoNeRF
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Table 1. Quantitative evaluation of our SurgicalGS method against existing methods
in endoscopic scene reconstruction. ‘Speed’ denotes the rendering speed (FPS). The
optimal and suboptimal results are shown in bold and underlined respectively. The
unit of depth metrics is millimeters.

Data Method ABS REL ↓ SQ REL ↓ RMSE ↓ PSNR ↑ SSIM↑ LPIPS ↓ Speed ↑

E
nd

oN
eR

F EndoNeRF [22] 0.0232 0.4999 3.229 35.63 0.941 0.153 0.04
EndoSurf [25] 0.0226 0.5896 3.075 34.91 0.953 0.112 0.04
LerPlane [23] 0.0351 0.5717 5.734 35.00 0.927 0.099 0.93

EndoGaussian [14] 0.0340 0.2362 2.926 37.71 0.958 0.062 148.35
Deform3DGS [24] 0.0324 0.2810 3.275 38.39 0.962 0.059 332.52
SurgicalGS (Ours) 0.0219 0.1115 1.820 38.18 0.960 0.062 194.80

St
er

eo
M

IS EndoNeRF [22] 0.0315 0.7183 3.022 28.79 0.809 0.266 0.06
EndoSurf [25] 0.0189 0.4031 2.457 29.36 0.861 0.211 0.05
LerPlane [23] 0.0354 1.0906 5.521 29.09 0.789 0.179 0.95

EndoGaussian [14] 0.0292 0.6057 5.050 31.02 0.878 0.132 130.15
Deform3DGS [24] 0.0330 0.7547 4.888 31.61 0.888 0.135 308.66
SurgicalGS (Ours) 0.0082 0.0391 2.174 31.54 0.885 0.148 214.06

dataset [22], which contains in vivo prostatectomy data captured from stereo
cameras at a single viewpoint and provides estimated depth maps with stereo
matching [13] and manually labeled tool masks. (ii) the StereoMIS dataset [7],
which is a stereo video dataset captured from in vivo porcine subjects containing
large tissue deformations. We estimate depth maps using the pre-trained RAFT
model [21]. Following [25], we divide frames of each scene into training and
testing sets with a 7:1 ratio. We use PSNR, SSIM, and LPIPS to evaluate the
similarity between actual and rendered images, common depth metrics, similar
to [12], to measure the quality of the depth map, and frames per second (FPS)
to evaluate reconstruction efficiency.

Implementation Details All the experiments are conducted on the RTX3090
GPU and the PyTorch framework. We employ the Adam optimizer with an initial
learning rate of 1.6× 10−3. For all scenes, the model is trained for 6K iterations
with the same loss function and initialization strategy. We set λsmooth = 0.0001
and apply 17 learnable Gaussian basis functions to compose the Flexible Defor-
mation Model in our experiments.

3.2 Quantitative and Qualitative Results

As listed in Table 1, although EndoNeRF [22], EndoSurf [25], and LerPlane [23]
effectively reconstruct deformable tissues, they suffer from low rendering speed
and struggle with rendering high-quality images, which limits their effectiveness
for real-time surgical scene reconstruction. On the other hand, EndoGaussian [14]
and Deform3DGS [24] improve image quality and rendering speed based on
3DGS, but they fail to reconstruct accurate depth maps, limiting their intraop-
erative reliability. Benefiting from normalized depth regularization, our method



SurgicalGS 7

Fig. 2. Visualisation of the 3D reconstruction results. Further details can be seen by
zooming in.

reduces geometry error by 37.79% (RMSE: 2.926 mm→ 1.820 mm) and achieves
a suboptimal result in rendering quality. Besides, although the rendering speed
of our method is slower than that of Deform3DGS [24], it still achieves real-time
performance, as most real-world endoscopes operate at 30-60 FPS.

We also visualize several scenes as shown in Fig. 2. It can be seen that
our method effectively models complex tissue motions and preserves texture de-
tails. In addition, our method reconstructs an accurate and smooth depth map.
In contrast, EndoNeRF [22], EndoSurf [25], and LerPlane [23] fail to adjust
scaling to match the real depth distribution, while EndoGaussian [14] and De-
form3DGS [24] struggle with capturing precise edges, especially in regions with
deformable tissues. These results demonstrate that our method achieves accu-
rate reconstructions of the dynamic surgical scene, highlighting its potential for
applications in intraoperative navigation and robotic surgery automation.

We present an ablation study to evaluate the effect of the proposed methods.
We first analyze the influence of our dense initialization strategy in Table 2. The
‘w/o init’ denotes using point clouds of the first frame to initialize the Gaussian
points, which results in a performance decrease, showing the significance of the
proposed dense initialization. Furthermore, we compare our LD̂ with common
depth losses, L1 LLogL1, and L−1

D̂
. As is shown in Table 2, LD̂ generally outper-

forms other depth losses and the unsupervised depth smoothness has a slight
improvement in depth metrics. Additionally, we find that although L−1

D̂
under-

performs on depth metrics, it significantly improves image quality. This may
indicate that strict constraints on the positions of Gaussians may limit their
flexibility in reconstructing, which might reason L−1

D̂
causes suboptimal render-

ing results. Fig. 3 demonstrates that our LD̂ produces a more accurate depth
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Fig. 3. Visualization of ablation study on depth loss using the StereoMIS dataset.
Further details can be seen by zooming in.

Table 2. Ablation of proposed methods. LD̂ is our normalized depth loss, and Ldepth

is normalized depth loss along with unsupervised depth smoothness.

Component Method RMSE ↓ PSNR ↑ SSIM ↑

Initialization w/o Init 2.362 31.43 0.881
w/ Init 2.174 31.54 0.885

Depth loss

ours-LLogL1 2.375 23.44 0.643
ours-L1 2.436 22.91 0.630
ours-L−1

D̂
4.956 32.29 0.903

ours-LD̂ 2.256 31.54 0.885
ours-Ldepth 2.174 31.54 0.885

map, and the unsupervised depth smoothness significantly enhances the overall
visual quality.

4 Conclusions

In this paper, we present a novel 3DGS-based approach for accurate surgical
scene reconstruction. Different from previous methods, we proposed a normal-
ized depth regularization and unsupervised depth smoother to ensure accurate
geometry. Additionally, the dense initialization strategy is introduced to remove
artifacts in depth maps and improve reconstruction quality. From the ablation
study, we validate the effects of our proposed methods. We also observe that L1
and LogL1 depth losses introduce noise and significantly degrade reconstruction
quality. Furthermore, we find that inverse depth loss struggles to capture accu-
rate geometry, but it improves image quality. This indicates that imposing less
constraint on the position of the Gaussians allows greater freedom to represent
the scene. Besides, we notice that incomplete and sparse initialization leads to a
noticeable decline in reconstruction performance. Extensive experiments on two
real surgical datasets show that our method achieves state-of-the-art reconstruc-
tion quality, particularly in terms of geometric accuracy.

Future work will focus on evaluating the robustness of SurgicalGS under
a variety of real-world and synthetic surgical scenarios, including complex and
challenging conditions such as blood, smoke, and blurring. Additionally, further
exploration is needed to assess the model’s ability to maintain high reconstruc-
tion quality and geometric accuracy in these adverse conditions, ensuring its
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adaptability and reliability in more dynamic and unpredictable surgical environ-
ments.
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