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Abstract. Accurate depth and camera pose estimation is essential for
achieving high-quality 3D visualisations in robotic-assisted surgery. De-
spite recent advancements in foundation model adaptation to monoc-
ular depth estimation of endoscopic scenes via self-supervised learning
(SSL), no prior work has explored their use for pose estimation. These
methods rely on low rank-based adaptation approaches, which constrain
model updates to a low-rank space. We propose Endo-FASt3r, the first
monocular SSL depth and pose estimation framework that uses founda-
tion models for both tasks. We extend the Reloc3r relative pose estima-
tion foundation model by designing Reloc3rX, introducing modifications
necessary for convergence in SSL. We also present DoMoRA, a novel
adaptation technique that enables higher-rank updates and faster con-
vergence. Experiments on the SCARED dataset show that Endo-FASt3r
achieves a substantial 10% improvement in pose estimation and a 2%
improvement in depth estimation over prior work. Similar performance
gains on the Hamlyn and StereoMIS datasets reinforce the generalisabil-
ity of Endo-FASt3r across different datasets. Our code is available at:
https://github.com/Mona-ShZeinoddin/Endo FASt3r.gitl
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1 Introduction

Accurate depth and camera pose estimation are prerequisites to gaining a deeper
geometric understanding of robotic-assisted surgery (RAS) scenes [18]. However,
the unique properties of RAS such as varying illumination, textureless areas, and
frequent occlusions complicate these tasks [4]. Although deep learning-based
methods are a common approach [I], their development is limited by the lack of
large-scale annotated endoscopic datasets, driving the adoption of self-supervised
learning (SSL). With the rise of foundation models [27J16], recent works have
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explored their potential in RAS [529]. However, directly applying them to RAS
is suboptimal [29], inspiring the introduction of adaptation techniques. The po-
tential of these techniques and the need for SSL have motivated the adaptation
of foundation models to RAS using SSL. While many SSL monocular depth
and pose estimation methods in RAS have utilised foundation models in their
depth module [529], none have explored their use in the pose module. Lever-
aging a foundation model in the pose module can address key challenges, such
as variations in camera movement and occlusions, which often lead to subopti-
mal performance in current CNN-based pose modules that focus mainly on lo-
cal patterns [21130]. Recent works on parameter-efficient fine-tuning techniques
(PEFT) in SSL monocular depth estimation of RAS scenes [29]5] have been
limited by the use of low-rank updates driven by the low-rank adaptation tech-
nique (LoRA) [I0]. While LoRA’s approach of decomposing the weight update
matrix into low-rank matrices is effective, it constrains adaptability, particularly
in cases with significant domain shifts, such as RAS, where higher-rank updates
are essential for optimal performance [II]. We introduce Endo-FASt3r, a novel
SSL monocular depth and pose estimation framework that relies on foundation
models for both tasks, making Endo-FASt3r the first to adapt a foundation
model for pose estimation in RAS scenes. For the pose module, we design Re-
loc3rX, extending the Reloc3r [7] foundation model for robust convergence in
SSL. We also present DoMoRA, a novel adaptation technique that advances re-
cent PEFTs [I1I13] by incorporating both low-rank and full-rank updates while
benefiting from faster convergence. Our main contributions and findings include:

1. We design Reloc3rX by extending [7], which addresses the scale sensitivity
issue of monocular SSL-based depth and pose estimation. Our work is the
first to use a foundation model for pose estimation in RAS.

2. We propose DoMoRA, a novel adaptation technique that enhances previous
PEFTs by addressing the necessity of both full-rank and low-rank updates
while improving convergence through weight decomposition.

3. Experimental results on three public datasets, SCARED, Hamlyn, and, Stere-
oMIS show a substantial improvement ranging from 7% —10% in the absolute
trajectory error metric for pose estimation and a 2% improvement in the ab-
solute relative error metric for depth estimation over state-of-the-art (SOTA)
methods, highlighting the benefits of Endo-FASt3r.

2 Methods

2.1 Preliminaries

Depth Anything (DA) V2: Previously trained on 62M urban scene images,
DA V2 employs a 12-layer DINO V2-based encoder [16] and a decoder with con-
volutional head and neck modules [27]. This work aims to better adapt DA V2 for
depth estimation in RAS through the proposed adaptation technique, DoMoRA.

Reloc3r: To directly regress the relative pose between image pairs [7], Reloc3r
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processes each image I; through 24 ViT encoder blocks, producing features Fj
and Fy for each image. The decoder includes 12 ViT blocks, each integrating
a cross-attention layer between its self-attention and feed-forward layers to en-
hance spatial alignment between F; and F5. The two branches are fully symmet-
rical with shared weights. The decoder produces features G; and G2, which are
then fed into a pose regression head comprising 2 feed-forward layers to regress
the 9D intermediate representation of rotation and 3D translation from I; to I
and Iy to I:

~5(3x3 3x1 ~(3%x3 3x1
R ) = Head(Gh), RPNV, 187D = Head(G) (1)

The 9D intermediate rotation representation is then orthogonalised using
singular value decomposition into a 3 x 3 rotation matrix, denoted as function
Orthogonal.

3x3 ~(3x3 3x3 ~(3x3
R% ’Xlz) = Olrthogonad(Rg1 )XIZ)), Rgz )XII) = Orthogonal(Rngh)) (2)

Reloc3r was trained on 6M images in a supervised manner via the angular
distance between the predicted and ground truth poses as the supervision sig-
nal. However, we have empirically verified that directly using Reloc3r in an SSL
framework for RAS scenes causes divergence. Our work focuses on redesigning
Reloc3r’s pose head to account for scale sensitivity, making Endo-FASt3r the
first framework to adapt a foundation model for pose estimation in RAS scenes.

MoRA: Improving upon LoRA-based techniques by using a square matrix as
opposed to low-rank matrices, MoRA enhances the capacity of the weight up-
date matrix [II]. Given the pre-trained weight W, € R¥* MoRA allocates a
square matrix M € R"*" with rank r and defines the new layer with MoRA as:

A(w) = Woz + faccomp (M feomp () ) (3)

In which feomp : R¥ — R” and fdecomp : R" — R¢ are non-parameterized
functions that compress the input dimension from k& to r and decompress the
output dimension from 7 to d respectively.

DoRA: Proposed to improve LoRA by drawing influence from Weight Normal-
ization [20], DoRA decomposes the weight matrix into its magnitude and direc-
tion to accelerate optimisation [13]. The weight decomposition of W € R4*¥ can
be written as W = mﬁ where m € R'** is the magnitude vector, V' € RI**
is the directional matrix, with || ||, being the column-wise vector norm of a ma-
trix. At initialisation, given the pre-trained weight Wy, we set m = ||Wy||. and
V = Wy. LoRA with rank r is then applied only to the directional component
while the magnitude component is kept trainable. The updated weight W’ is:

—m V + AV —m Wy + BA
TV+AV]e T [Wo + BA|l.

w! (4)
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Fig. 1: EndoFAst3r SSL monocular depth and pose estimation pipeline based on
the two foundation models, DA V2 and Reloc3rX.

where AV is the incremental directional update learned by multiplying two low-
rank matrices B and A, with the underlined parameters being trainable. The
new layer with DoRA adaptation h(x) can be defined as h(z) = W'z.

Self-Supervised Depth and Pose Estimation: The reprojection loss-based
approach [§] is a widely used SSL method in monocular depth and pose esti-
mation, especially in RAS [22]. It comprises a depth module, which estimates
the depth map of the source frame I, and a pose module, which predicts the
camera movement between the source frame Iy and target frame I;. Given the
depth prediction Dy for I, and R and ¢, the rotation and translation matrices
describing the camera movement, the synthetic target frame can be derived us-
ing the reprojection function 7 as Is_,; = 7 (Ds, K, R, t, I5), in which K is the
camera intrinsics. A multi-scale SSIM (MS_SSIM)-based [25] reprojection loss
proposed in [29] is used to measure the dissimilarity between the original and
synthetic image:

Lyeproj = a(l ~MS_ SSIM(IL, IH)) B — Loy (5)

To address the varying illumination conditions and occlusions in RAS scenes,
we have followed the approach in [22] which introduces the Tihkonov regulariser
loss terms. The total loss Ly can be written as Ly = Lieproj + Ltihkonov-

2.2 Proposed Framework: Endo-FASt3r

As presented in Fig. [I, Endo-FASt3r structures an SSL framework for monocular
endoscopic depth and pose estimation by incorporating DA V2 in the depth mod-
ule and Reloc3rX in the pose module. We propose a novel adaptation method,
DoMoRA, to better adapt both DA V2 and Reloc3rX to RAS scenes.
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DoMoRA: To benefit from the faster convergence of DoRA and the full-rank
update space of MoRA, we introduce DoMoRA. Following Eqs. [4 3] and given
the pre-trained weight ngXk, rank r, magnitude m, DoRA low-rank matrices
B¥*™ A"k and MoRA square matrix M7™*", the new layer with DoMoRA is:

Wo + BA

hz) = (m—2 25
(@) (m||W(J+iA|\c

).73 + fdecomp (Mfcornp (l') ) (6)

In which feomp and faecomp follow the rotation and truncation methods|II].
Endo-FASt3r incorporates DoMoRA in the query and value matrices of all trans-
former blocks (Fig. . Inspired by the hierarchical feature learning nature of
neural networks, we adopt the vector rank approach presented in [29].

Rotation
compressor|
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Truncation
[ecompresso:

Truncation

Fig.2: Illustration of the DoMoRA Transformer block, in which matrices
M,m, A, B are trainable while pre-trained ¢, k,v matrices are frozen. In ad-
dition, DA V2 decoder neck, head and Reloc3rX pose head are also trainable.

Reloc3rX: We design Reloc3rX, an extension of Reloc3r tailored for RAS. Un-
like supervised methods, SSL-based monocular depth and pose estimation suffers
from scale ambiguity [24]. This is caused by the scale-sensitive Tihkonov regu-
lariser [22] loss term, which leads to training instability and even divergence. We
empirically verified that directly applying Reloc3r, pre-trained in a supervised
manner on urban scenes, results in divergence during the early stages of training
in RAS, due to scale misalignment. To address this, the pose regression head in
Eq. [1] was modified to predict rotation in the 3D axis angle space instead of the
9D rotation matrix space, eliminating the need for orthogonalisation in Eq.
To ensure alignment with RAS scale, particularly at the early stages of training,
the predicted axis-angle and translation vectors are scaled by a factor of 0.001.
After scaling, the resulting axis angle qbg?l’ﬁ)is converted to a rotation matrix via
the Rodrigues rotation formula [15].

3x1 3x1 Txd
65 5 = Head(GYT*) (7)

Unlike Reloc3r, Reloc3rX computes the pose only from the source image to
the target image, as the reverse is unnecessary for our SSL framework.
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Training and Evaluation framework: In the training phase, given the source
frame I, and the the target frame I;, the depth module operates on the source
frame I and produces its corresponding depth map. Meanwhile, the pose module
will operate on both frames to estimate their relative camera pose. The synthetic
target frame is then generated via reprojection. The Tihkonov regulariser and
reprojection loss are used for optimisation. In the evaluation phase, each module
operates independently to produce the desired depth map and camera pose.

3 Implementation details

Training: Endo-FASt3r utilises the Adam optimiser with a learning rate of le—4
decaying every 10 steps. Training was performed on an A100 GPU for 10 epochs
with a batch size of 4 for 20 hours.

Datasets and Evaluation Protocol: Endo-FASt3r has been trained and eval-
uated on the SCARED dataset [2], captured with a da Vinci Xi from porcine
cadavers using structured light for depth collection. Following the split in [22],
15,351 frames were used for training, 1,705 for validation, and 551 for depth
evaluation. Meanwhile pose evaluation utilised two trajectories of length 410
and 833 frames defined in [22]. To examine generalisability, we used the Hamlyn
dataset following [19] for the depth module. For the pose module, we extracted
frames 9,780-10,980 from sequence P3 of the StereoMIS dataset [9], which exhibit
significant tissue deformation and camera motion in an in vivo setup. Stere-
oMIS ground-truth poses were derived from the kinematics of the endoscope.
The Depth evaluation metrics, mainly the absolute relative error (AbsRel), were
adopted from [22]. Before evaluation, depth maps were scaled following [3T]. The
Absolute trajectory error (ATE) [I4] was used for pose evaluation.

4 Results

We primarily compare Endo-FASt3r against SOTA reprojection-based SSL ap-
proaches for monocular depth and pose estimation [SI8/I7I2829] in RAS. To
assess the generalisability of non-endoscopic foundation models DA V2 and Re-
loc3r, we also include their zero-shot performance. We use the reported metrics
for all comparison methods in Table [1| [29/6]. To ensure fairness, we excluded
SSL methods with extra modules beyond depth and pose in their reprojection,
such as camera intrinsics estimation or image intrinsic decomposition, which add
extra self-supervision signals [6J12]. Even if included, Endo-FASt3r still excels
significantly in pose estimation and is comparable or superior in depth estima-
tion, proving its high performance without requiring additional parameters.
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Table 1: Quantitive evaluation on the SCARED and Hamlyn datasets. ATE-
T1/T2 denote ATE for trjactorries 1/2. Total/Train denote the total/trainable
(millions) depth module parameters. Speed (ms) is reported for the depth mod-
ule.

| Method |AbsRel| SqRell RMSE| 61 |ATE-T1 | ATE-T2 ||Total Train|Speed
DeFeat-Net [23] 0.077 0.792 6.688 0.941| 0.1765  0.0995 |14.8 14.8]| -
SC-SfMLearner [3] 0.068 0.645 5.988 0.957| 0.0767  0.0509 |14.8 14.8| -
Monodepth? [8] 0.069 0.577 5.546 0.948| 0.0769  0.0554 |14.8 14.8| -
A Endo-SfM [17] 0.062 0.606 5.726 0.957| 0.0759  0.0500 |14.8 14.8| -
E| AF-SfMLearner [22] 0.059 0.435 4.925 0.974| 0.0757  0.0501 |14.8 14.8| 8.0
o Yang et al. [28] 0.062 0.558 5.585 0.962| 0.0723  0.0474 | 2.0 2.0 | -
Q| Zero-Shot DA V2 [27] | 0.091 1.056 7.601 0.916 - - - - -
Zero-Shot Reloc3r [27] - - - - 0.0938 0.0735 - - -
DARES [29] 0.052 0.356 4.483 0.980| 0.0752  0.0498 |24.9 2.88 | 15.6
EndoFASt3r (Ours) | 0.051 0.354 4.480 0.998] 0.0702 0.0438 |24.9 2093 19.1
£ |Endo Depth & Motion [19]| 0.185 5.424 16.100 0.732 - - - - -
'E|  AF-SfMLearner [22] 0.168  4.440 13.870 0.770 - - 14.8 14.8| 7.7
| EndoFASt3r (Ours) | 0.166 4.529 13.718 0.778 B - 249 293191

Pose estimation: Evaluation on the rigid SCARED dataset shows Endo-FASt3r
outperforming all SOTA methods, improving by 6.64% and 12.04% - average
9.34% - over the second-best approach, DARES (with a CNN-based pose mod-
ule), for trajectories 1 and 2 respectively (Table. Fig. presents this improve-
ment on trajectory 2, where occlusion by surgical fluid is effectively addressed
by Endo-FASt3r. To assess generalisability to a non-rigid case with RAS-like
tissue deformation and camera motion, we evaluated on the StereoMIS dataset,
comparing against DARES, using its public code (Fig. . Endo-FASt3r outper-
forms DARES by 7.13% (Table|3)). The pose module operates in real time, with
a speed of 26ms. Other works do not report this quantity.

SC-SfMLearner Monodepth2 Endo-SfM AF-SfMLearner DARES Endo-FASt3r

; o @/ \:7@5 «?;;; = /

Trajectory-2

20 _1e <L e

Ground truth  ——— Estimated

Fig. 3: Qualitative pose estimation comparison on the SCARED dataset

Depth Estimation: Evaluation on the SCARED dataset shows Endo-FASt3r
outperforming all SOTA methods, surpassing the second-best approach, DARES
by 2%. While both use DA V2, DARES employs a LoRA-based adaptation, high-
lighting the advantages of DoMoRA over LoRA-based methods. Further testing
on the Hamlyn dataset confirms Endo-FASt3r’s effectiveness, with a 1.19% im-
provement over the next-best approach (Table . Depth estimation outputs
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from both datasets are shown in Fig. [ Notably, Endo-FASt3r only has 2.93
million trainable parameters (11.7% of total parameters), and maintains a real-
time inference speed of 19.1ms, slightly increased compared to SOTA methods.

Input Fan, DeFeat-Net ~ SC-SfMLearner Monodepth2 Endo-SfM  AF-SfMLearner DARES Endo-FASt3r

o ol ol |
-
] ] - W P T

Fig.4: Qualitative depth estimation comparison on the SCARED and Hamlyn
datasets - Endo-Fast3r better captures edges demonstrating its robustness.

SCARED

Hamlyn

We also present 3D reconstructions on the SCARED dataset in Fig. [f] which
shows Endo-FASt3r better capturing darker areas with fewer artifacts.

Input DARES Endo-FASt3r DARES Endo-FASt3r

SCARED
Stereo-MIS

5
20
— Ground truth Estimated

Fig.5: Qualitative comparison with the second-best approach, DARES:
SCARED 3D reconstruction (left) - StereoMIS pose estimation (right).

Ablation Studies: Table 2] shows that DoRA and Reloc3rX improve pose es-
timation over the LoRA-based DARES (in the first row), while maintaining the
same depth estimation accuracy, and convergence time despite Endo-FASt3r’s in-
creased number of parameters, thanks to DoRA’s faster convergence properties.
Using MoRA’s full-rank matrices alone proves suboptimal. By integrating foun-
dation models in both modules and leveraging both full-rank and low-rank up-
dates, Endo-FASt3r enhances performance in both tasks while matching DARES
in convergence time, despite having more parameters.

Table 2: Ablation studies on the SCARED dataset. Table 3: StereoMIS results.

DoRA|MoRA|DoMoRA|Reloc3rX|AbsRel| SqRell RMSE| 41 |ATE-T1} ATE-T2)
X X ‘ X

Method ATE]
DARES 0.0715
EndoFASt3r (Ours)|0.0664

0.052  0.366 4.522 0.979| 0.0752  0.0498
0.052  0.387 4.475 0.986| 0.0735  0.0486
0.057 0.465 5.195 0.971| 0.0748  0.0505

‘ 0.051 0.354 4.480 0.998‘ 0.0702 0.0438

StereoMIS

X | XS X
X | X
<X X

v
v
v
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5 Conclusion

We present Endo-FASt3r, a self-supervised monocular depth and pose estima-
tion framework for RAS. We introduce Reloc3rX, the first development of a
foundation model for pose estimation in endoscopic scenes. We also introduce
DoMoRA, a novel adaptation technique that enables both low-rank and full-
rank updates while benefitting from faster convergence. As the first SSL-based
method that uses foundation models for both depth and pose estimation, Endo-
FASt3r achieves a substantial improvement ranging from 7% — 10% in the ATE
metric for pose estimation and 2% in the AbsRel metric in depth estimation over
prior methods, as shown across three public datasets. Future work will explore
the use of video foundation models [26] to improve temporal stability.
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