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Abstract. Large-scale pre-training holds the promise to advance 3D
medical object detection, a crucial component of accurate computer-
aided diagnosis. Yet, it remains underexplored compared to segmenta-
tion, where pre-training has already demonstrated significant benefits.
Existing pre-training approaches for 3D object detection rely on 2D med-
ical data or natural image pre-training, failing to fully leverage 3D vol-
umetric information. In this work, we present the first systematic study
of how existing pre-training methods can be integrated into state-of-the-
art detection architectures, covering both CNNs and Transformers. Our
results show that pre-training consistently improves detection perfor-
mance across various tasks and datasets. Notably, reconstruction-based
self-supervised pre-training outperforms supervised pre-training, while
contrastive pre-training provides no clear benefit for 3D medical object
detection. Our code is publicly available at: |https://github.com/MIC-
DKFZ/nnDetection-finetuning,.
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1 Introduction

Accurate detection of anatomical structures and abnormalities in 3D medical
imaging is crucial for reliable diagnosis and clinical decision-making. Unlike seg-
mentation, which provides detailed structural delineation, detection focuses on
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localizing clinically relevant objects. Critically, detection excels in clinically rel-
evant metrics, especially in high-stakes scenarios where completely missing an
object can have far more severe consequences than minor inaccuracies in pixel-
wise delineation [24]. Despite its clinical importance, research on 3D object de-
tection has received significantly less attention than segmentation, as evidenced
by medical image analysis challenges predominantly emphasizing segmentation
tasks [23].

Recent advancements in 3D medical image segmentation have spurred inter-
est in large-scale pre-training. For instance, Ulrich et al. introduced Multitalent
[31], a framework that enables supervised training across multiple segmentation
datasets. Moreover, self-supervised pre-training strategies [32/3934U30/13] have
demonstrated promising results for segmentation applications. Likewise, detec-
tion models might particularly benefit from pre-training due to the typically
small size of annotated datasets and their tendency to over focus on local im-
age features, rather than leveraging broader contextual information. However,
despite the advancements in pre-training for segmentation, the impact of purely
3D large-scale pre-training remains unexplored for 3D object detection.

This gap was also acknowledged in one of the most recent and comprehensive
studies on 3D medical object detection by Baumgartner et al., who extensively
revised the nnDetection framework [5/4]. While their work made significant con-
tributions to the field, it did not address the potential role of large-scale pre-
training. Yet, beyond their work, research on pre-training strategies for medical
object detection is virtually nonexistent, with only a handful of studies even
touching upon this direction. Existing pre-training strategies for medical object
detection have predominantly focused on 2D data, utilizing either natural image
pre-training [35] or 2D medical data [20/TO26/6121]. This is largely due to the
scarcity of publicly available 3D object detection datasets with sufficient cases
for effective pre-training. To partially capture 3D context, some methods ex-
tend pre-trained 2D models by integrating adjacent slices. This includes using
ImageNet-pretrained backbones with 3D context slices added at the downstream
stage [33136] or pseudo-3D approaches that treat image channels (e.g., RGB) as
separate slices during pre-training [38]. Another strategy relies on video-based
pre-training, where adjacent frames are used to simulate the sequential nature of
medical slices [I]. Notably, no prior study has systematically explored large-scale
3D pre-training for 3D medical object detection.

To bridge this gap, we present a comprehensive study evaluating the impact
of different large-scale pre-training strategies on 3D medical object detection.
Specifically, our key contributions include:

1. The First Comprehensive Study on Pre-Training Paradigms for
3D Object Detection to analyze the impact of both supervised and self-
supervised large-scale pre-training for 3D medical object detection across
eight diverse downstream detection datasets.

2. Evaluation Across Detection Architectures: Model performance varies
widely depending on dataset characteristics and annotation types, such as
bounding boxes or segmentation masks, as demonstrated by Baumgartner
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et al. [4]. To assess the generalization of pre-training strategies, we examine
their transferability to two state-of-the-art detection models, Retina U-Net
[I7/4] and Deformable DETR [40/4], covering both CNN and Transformer.

3. Comparison of Pre-Training Architectures for Pre-training: Res-
EncL, a state-of-the-art model for semantic segmentation [I6] that has shown
improved downstream performance with self-supervised pre-training [32],
and an adapted version of Retina U-Net, allowing both segmentation pre-
training as well as downstream 3D object detection fine-tuning.

2 Methods

In this study, we evaluate the impact of large-scale pre-training on 3D medi-
cal object detection using two state-of-the-art architectures: Retina U-Net and
Deformable DETR. Notably, both architectures are specifically designed for de-
tection and cannot be directly applied to other tasks without modifications.
Therefore, for pre-training, we adapt Retina U-Net for supervised segmenta-
tion and employ the state-of-the-art ResEncL. model for both supervised and
self-supervised learning [32/16]. We then transfer only the pre-trained backbone
from these models to the detection networks for downstream fine-tuning, as vi-
sualized in fig. Our experimental setup involves five development datasets
and three independent testing datasets. The development datasets are employed
to systematically investigate various fine-tuning strategies, enabling us to iden-
tify optimal approaches for adapting pre-trained models to 3D medical object
detection.

2.1 3D Object Detection

Retina U-Net [I7] is a single-stage, anchor-based object detector enhanced
with semantic segmentation supervision. Its architecture extends the Feature
Pyramid Network (FPN) of RetinaNet with additional high-resolution levels in
the FPN’s top-down pathway to support an auxiliary segmentation task, creating
a U-Net-like symmetric structure (U-FPN), as visualized in fig. |1} The detection
head, applied to the final four or five resolution levels, consists of a classification
and a regression branch. The regression branch uses smooth L1 loss, while the
classification branch employs binary focal loss. Segmentation is supervised with
a combined cross-entropy and batch Dice loss function.

Deformable DETR [40)] is a two-stage transformer-based detection architec-
ture. In contrast to traditional DEtection TRansformer (DETR), Deformable
DETR replaces global self-attention with a sparse deformable attention mecha-
nism, significantly reducing computational complexity and enhancing efficiency
by focusing on a small set of queries per attention operation. Additionally, De-
formable DETR introduces iterative bounding box refinement, progressively up-
dating the bounding boxes instead of predicting them from scratch. As visualized
in fig. |1} Deformable DETR contains an encoder network as a first component to
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Fig. 1. A cross-framework bridge between nnDetection and its pre-training
counterparts: Different pre-training paradigms (supervised and self-supervised), pre-
training architectures (Retina U-Net and ResEncL), and detection-specific models
(Retina U-Net and Deformable DETR) can be combined like puzzle pieces, offering
a flexible and integrative approach to optimizing detection performance.

extract a feature representation from the input image. A point-wise convolution
is applied to this feature representation to reduce the channel dimensionality.
The extracted feature maps are flattened into a sequence of spatial tokens, with
positional encodings added to retain spatial information. These tokens are then
processed by a Transformer encoder-decoder architecture (3 encoder and 6 de-
coder blocks). The Deformable DETR detection head comprises one branch for
classification (linear layer) and one for bounding box prediction (multi-layer per-
ceptron). Focal loss is employed to account for dataset imbalances.

2.2 Pre-training Paradigms

Supervised Pre-training For large-scale supervised pretraining, we adopted
the MultiTalent (MT) approach — a multi-dataset training paradigm introduced
by Ulrich et al. [31]. To support this, we compiled a large-scale dataset col-
lection of publicly available, pixel-wise annotated 3D medical images, compris-
ing over 20,000 3D volumes sourced from 65 datasets, with more than 300,000
image-mask pairs. The dataset includes CT, MRI, and PET modalities. Due
to length limitation, detailed dataset descriptions are omitted here but can be
found in the associated arXiv publication. Notably, several datasets feature re-
annotated publicly available images—for instance, the Abdomen Atlas [T19] and
AbdomenlK [22] datasets include images from the Medical Decathlon, among
others. All datasets and images used for downstream fine-tuning were excluded
from pre-training to avoid data leakage.



The Missing Piece: A Case for Pre-Training in 3D Medical Object Detection 5

Self-Supervised Pre-training Self-supervised pre-training was performed us-
ing two large-scale medical imaging datasets: CT-RATE [12] and the Adoles-
cent Brain Cognitive Development (ABCD) Study [28], totaling 91,768 train-
ing images. CT-RATE includes 25,692 non-contrast 3D CT scans, expanded to
50,188 volumes through multiple reconstructions from 21,304 unique patients.
The ABCD Study, the largest U.S. longitudinal brain development study, con-
tributed 41,580 brain images from 11,875 participants aged 9-10 at baseline,
including T1-weighted, T2-weighted, and fMRI scans. We evaluated four self-
supervised pre-training paradigms:

Models Genesis (MG) aims to reconstruct original image patches from trans-
formed versions using non-linear intensity shifts, in-painting, out-painting, and
local shuffling techniques [39].

Masked Autoencoder (MAE) utilizes a masked autoencoding strategy to recon-
struct images, applying a 75% mask ratio to learn contextual features [I3].
SparkMAE (S3D) modifies MAEs for CNN architectures to better process sparse
inputs. It introduces sparse convolutions and normalization, where masking is
reapplied after each convolution and normalization is restricted to non-masked
values. A learnable mask token is used to fill masked areas for the encoder,
followed by a densification convolution layer applied to all but the highest reso-
lution feature maps [30].

VoCo leverages anatomical consistency by contrasting random sub-volumes
against base crops to predict contextual overlap within 3D medical images [34].

Implementation We trained two MultiTalent networks: the state-of-the-art
segmentation model ResEncL U-Net [16], and Retina U-Net [17]. The ResEncL
U-Net employed a patch size of cubic 192 with a batch size of 12, while Retina
U-Net used a patch size of cubic 128 and a batch size of 48. These differences
in training parameters reflect that ResEncl. U-Net was optimized for segmen-
tation tasks, while Retina U-Net was designed for object detection. All SSL
methods used the ResEncl architecture with a patch size of 192, and a batch
size of 12. All networks were trained for 4,000 epochs using four NVIDIA A100
GPUs and a decreasing 'poly’ learning rate schedule starting at 0.01 [8]. All pre-
training data was preprocessed with z-score normalization and resampled to an
isotropic voxel spacing of 1 mm. All other training parameters follow the default
implementations in the corresponding open-source code-bases: All fine-tuning
experiments are implemented within the nnDetection framework [5/4] and fol-
low the default training scheme, including all hyperparameters. Therefore, the
computational requirements match those reported in [4] and are independent
of the pre-training. Supervised pre-training is conducted using the MultiTalent
framework [31], while self-supervised pre-training is performed using the nnSSL
framework|32], both inspired by nnU-Net [I5]. This work establishes, for the first
time, a cross-framework bridge between nnDetection and its pre-training coun-
terparts, facilitating seamless integration across detection, segmentation and SSL
paradigms.
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Table 1. Development and Test Pool Datasets, including the numbers of images for
training, validation and testing, the number of objects and the median spacing.

Dataset Target Modality Split Objects Spacing [mm)]
Dev D01 MSD Pancreas [2] Pancreatic Tumor cT 156,/40/85 283 2.50x0.80x0.80
Dev D02 RibFrac [37] Rib Fracture cT 336,/84/80 4422 1.25x0.74x0.74
Dev D03 KiTS21 [14] Kidney Cyst, Tumor cT 204/51/45 826 0.78x0.78x0.78
Dev D04 LIDC [3] Lung Nodule (benign vs. malign.) CT 690/173/155 1884  1.38x0.70x0.70
Dev D05 DUKE Breast [27] Primary Breast Tumor MRI 509/128/274 911 1.00x0.70x0.70
Test D06 LUNA16 [29] Lung Nodule CcT 711/88/89 1186 1.25x0.70x0.70
Test D07 PN9 [25] Lung Nodule CT  6037/670/2091 40436  1.00x1.00x1.00
Test D08 CTA-A [7] Brain Aneurysm cT 948/238/152 1590  0.40x0.46x0.46

2.3 Downstream Datasets

We utilized a total of 8 datasets, comprising CT and MRI images with vary-
ing object types, to develop and evaluate all methods. The datasets were split
into two pools: a development pool, which was used to determine the optimal
parameters and make design decisions, and a test pool to evaluate the impact
of different pre-trainings (table . From all datasets without an official split we
separated hold-out test sets, comprising 15-30% of all images. The remaining im-
ages were split 80/20 into training and validation sets. Our experimental design
builds upon the principles and processing steps established by Baumgartner et
al. [4], ensuring consistency with their methodology. For PN9 (D07) experiments,
we trained a single model on the training set, selected the post-processing pa-
rameters on the official validation set, and used the provided test set for our final
evaluation. For CTA-A (D08) we split the data 80/20 into train and validation
sets and utilized the internal test set (containing data from the same hospitals as
the training data) for the final evaluation. To ensure a unified evaluation across
the datasets, we employed the nnDetection metric calculations. For all datasets
with official evaluation scripts, we will additionally provide the official evaluation
in an arXiv version of this paper.

2.4 Metrics and Statistical Analysis

Detection performance was evaluated using the mean Average Precision (mAP)
[I7124] at an IoU threshold of 0.1, emphasizing the diagnostic performance of
the method and its ability to coarsely localize target objects. As an additional
metric, the Free-response Receiver Operating Characteristic (FROC) [18129] was
employed with False Positive Per Image (FPPI) thresholds at [1/8, 1/4, 1/2, 1,
2, 4, 8]. To account for variations in object counts and task difficulty, rankings
were computed via bootstrapping with 1000 iterations on the image level.

3 Experiments and Results

We explore large-scale pre-training for 3D object detection by evaluating four
configurations: (i) Retina U-Net optimized for nnDetection (RetUNet), (ii) De-
formable DETR with the Retina U-Net encoder (DefDETR), (iii) Retina U-Net
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with an encoder from the ResEncL architecture (ResEnc-RetUNet), (iv) De-
formable DETR with the ResEncL encoder (ResEnc-DefDETR).

Finding the Best Fine-Tuning Configuration: We identify the optimal
fine-tuning configuration for each architecture based on MultiTalent (MT) pre-
training, using an 80/20 train-validation split within the training set. As shown
in table[2] using a fixed 1mm target spacing outperformed nnDetection’s dataset-
dependent spacing on these datasets. A learning rate of 0.1 was more effective
than lower values, and transferring only encoder weights performed better than
full model transfer. For ResEnc, fine-tuning with the pre-training patch size (192)
showed no benefit for RetUNet and caused out-of-memory issues for DefDETR
on a single A100 GPU node. Additionally, we explored strategies for handling
multi-sequence datasets using D05 with four input channels. During MT pre-
training, we assigned a unique stem per dataset to adjust the number of input
channels, mapping them to a uniform 32-channel representation. For downstream
fine-tuning, we tested three approaches: (i) Random initialization, (ii) Replicat-
ing a single-channel MRI stem [2], (iii) Using a stem from another four-sequence
MRI dataset [11]. The third approach performed best. For SSL pre-training, we
used the second-best random initialization instead.

Table 2. Finding the best fine-tuning configuration for each architecture. Val-
idation results on five development datasets, reporting mean Average Precision (mAP)
with MultiTalent pre-training.

mAP@IoU 0.1 Stem ablation D05
Model Transfer Spacing Patch LR D01 D02 D03 D04 Mean Rank|RND 1Ch[2] 4Ch|[IT]

Backbone Default 128% le-2 80.32 74.71 80.81 63.00 74.71 3.50 - - -

Backbone Ix1x1  128° le-3 86.96 73.59 79.50 66.86 76.73 3.25 - - -
All 1x1x1 128° le-2 87.51 76.40 84.04 66.61 78.64 2.00 - - -

Backbone Ix1x1  128° le-2 88.25 75.74 85.35 67.32 79.16 1.25 |87.17 84.83 88.16

RetUNet

DefDETR. Backbone Default 128% 3e-4 73.32 76.86 85.57 61.96 74.43 1.75
Backbone 1x1x1  128% 3e-4 90.06 77.82 84.60 63.87 79.09 1.25

85.96 85.70 87.89

RetUNet Backbone Ix1x1  128% le-2 90.38 75.84 83.61 65.96 78.95 1.50 |84.88 86.12 85.11

ResEnc- Backbone 1x1x1 1922 3e-4 OOM OOM OOM OOM - 2.00
DefDETR Backbone  1xlxl 128 3e-4 90.53 77.65 85.49 66.70 80.09 1.00

ResEnc- Backbone 1x1x1l 192° le-2 92.06 73.09 84.23 63.51 78.22 1.50 ‘
‘88.28 85.02  87.28

Impact of Pre-training To evaluate the impact of pre-training, we trained two
baseline models from scratch for comparison: one following the architecture and
configuration (e.g. median target spacing) recommended by nnDetection ("de-
fault") and another with a fixed architecture and target spacing cubic lmm to
match the pre-trained models ("fixed"). Overall, pre-trained models consistently
outperform their non-pretrained counterparts across all architectures, as demon-
strated in table [3] and fig. [2] Among the pre-training strategies, self-supervised
reconstruction-based approaches (MAE, MG, S3D) yield the best results across
all datasets. In contrast, contrastive pre-training (VoCo) underperforms relative
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to training from scratch. Supervised pre-training (MT) also leads to notable per-
formance gains. Overall, pre-training provides a more substantial performance
boost for Deformable DETR than for Retina U-Net. Furthermore, the ResEnc
backbone surpasses its Retina U-Net counterpart in performance but requires
more VRAM and has a higher parameter count. Notably, a fixed architecture
with a target spacing of 1 mm, when trained from scratch, achieves better rank-
ings across datasets and models than the nnDetection configuration.

Aggregated D01-D08 Aggregated D01-D08 Thetrainig
+175 X2 +131 L MG
+155 X +131 o s3D »
+189 i — +126 Emm———— MAE ?
+0.21 ix 0.05 VoCo g
+1.77 X +121 mT E
-0.54 ix -1.09 ix No - Fixed &l
78.12 ix 76.94 P No - Default
+2.73 X +2.18 ; MG
4217 x +1.38 S s3D z
+2.08 x +1.28 x i MAE z
-0.92 HE- 136 ix VoCo g
+1.60 X +1.03 X T 2
221 +132 % No - Fixed B
77.80 ix 76.88 i x No - Default
364 3 404 wr | Fl
w79 el +158 No - Fixed o
76.24 X 75.46 No - Default B
+3.58 % +3.12 X T I§
+2.40 +1.96 No - Fixed H
76.22 75.79 No - Default F
mean 0 1234567 8910111213 mean 01234 6 61011 -
mAP Rank - AP @ loU 0.10 FROC @ ank

Fig. 2. Reconstruction-based SSL pre-training enhances detection the most.
Aggregated ranking distributions for the test splits, that were derived from bootstrap-
ping with 1000 iterations for each model and aggregated across all datasets D01-D0S.
Next to the ranking distribution, we report the difference in mAP and FROC of each
method compared to the default nnDetection baseline for each architecture.

Table 3. High variance across different pre-training paradigms and archi-
tectures on the test splits of the dev. and test pool datasets. The overall best
metric is underlined, while the best for each architecture is highlighted in bold.

b mAP@IoU 0.10 FROC@IoU 0.10

re-

Model  Training D01 D02 D03 D04 D05 D06 D07 DO8|Mean Rank|| D01 D02 D03 D04 D05 D06 D07 DO8|Mean Rank
No - Default 73.16 78.00 78.38 66.65 78.95 82.70 67.12 84.81| 76.22 16.78| 79.50 65.09 73.62 62.89 85.40 84.69 65.00 90.14| 75.79 14.56

RetUNet No - Fixed 79.15 80.35 81.40 67.12 75.41 83.33 68.34 93.89| 78.62 9.33|| 85.04 67.49 76.06 64.57 81.49 84.95 66.38 96.03| 77.75 10.11
MT [BI]  83.89 79.48 81.83 68.87 82.44 82.15 67.29 92.48/79.80 8.89|89.41 66.40 77.48 65.83 87.90 84.44 65.14 94.67|78.91 8.78

72.61 67.62 77.48 59.06 78.47 84.44 67.59 96.37
73.45 68.74 78.25 68.39 81.18 86.10 67.73 92.40
87.90 69.43 77.99 65.87 88.11 85.84 67.36 93.42

75.45 11.00
77.03  9.00

DefDETR No - Fixed  68.72 80.29 79.49 69.30 74.64 84.31 69.98 89.55| 77.03 10.89
VT 79.49 7.33

MT [31] 83.96 80.93 80.61 66.99 82.77 83.55 69.58 90.70| 79.89 8.11

No - Default 73.84 79.25 79.57 65.75 78.64 83.13 68.52 93.68| 77.80 13.44|| 78.66 67.00 74.39 62.70 84.52 85.33 66.20 96.26| 76.88 11.11
No - Fixed 83.75 79.35 81.25 68.33 79.80 83.69 68.97 94.95| 80.01 8.00(| 88.40 67.26 76.19 65.50 85.56 86.48 66.97 96.60| 79.12 7.67
ResEnc- MT [31] 78.84 79.70 82.39 67.91 80.00 83.45 69.52 93.35| 79.40 8.11|| 84.71 66.60 78.25 65.87 86.39 85.97 67.69 95.12| 78.83 7.67
RetUNet Vo(‘oﬁ 74.47 80.35 76.00 66.87 78.65 82.51 65.86 90.34| 76.88 14.78|| 79.66 67.39 72.07 62.98 86.44 86.48 63.77 92.74| 76.44 12.00

No - Default 67.65 79.93 83.43 62.07 71.06 82.04 70.18 9359‘ 76.24 11.89

83.73 78.18 80.26 69.07 81.25 83.03 69.26 94.27| 79.88 8.67||90.25 5 75.80 66.29 86.70 87.12 67.27 96.15| 79.08 6.67
79.87 78.58 81.10 70.45 81.24 83.82 69.20 95.44| 79.96 8.33|| 86.39 65.85 76.83 68.30 85.97 86.22 67.25 96.60| 79.18 7.89
MG [39] 82.64 79.36 83.37 68.85 82.06 83.13 69.72 95.05|80.52 6.11|| 87.39 67.65 79.67 66.39 87.38 86.99 67.60 96.71|79.97 3.89

No - Default 67.87 78.86 85.33 64.30 80.83 82.89 69.32 95.59| 78.12 10.63|| 73.11 67.26 78.89 61.76 85.19 84.57 67.01 97.73| 76.94 10.75

No - Fixed  67.20 80.20 86 66.77 81.60 84.16 69.42 90.44| 77.58 11.44|| 73.11 68.21 77.61 65.08 86.50 85.84 67.50 92.40| 77.03 10.22

o
&

ResEnc- MT 82.30 81.12 67.09 81.34 83.39 69.28 92.47| 79.90 7.89||86.89 70.31 78.51 65.83 86.18 85.71 67.58 93.65| 79.33 7.44
DefDETR. VoCo 74.98 80.22 81.70 63.72 82.72 80.55 70.98 91.81| 78.34 10.67|| 79.50 70.51 78.51 62.42 87.80 83.04 68.89 93.88| 78.07 8.33
MAE 74.50 82.09 82.21 67.16 81.82 85.68 71.56 95.07|80.01 3.78|| 80.00 69.92 78.89 66.15 86.39 87.24 69.51 96.94| 79.38 3.67

S3D [30] 73.29 82.44 82.71 67.40 82.14 85.58 70.39 93.44| 79.67 4.89|| 80.50 70.61 79.15 66.85 87.07 87.50 68.46 95.35|79.44 3.56
MG 78.62 81.47 82.71 66.76 81.41 85.73 70.44 91.81| 79.87 6.44|| 86.05 70.15 78.64 65.08 86.44 86.86 68.28 93.99|79.44 6.00
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4 Discussion

This work systematically studies the impact of large-scale pre-training on 3D
medical object detection, showing that reconstruction-based self-supervised learn-
ing outperforms supervised pre-training. It also bridges nnDetection with pre-
training frameworks, enabling a unified approach for medical image analysis.
However, supervised pre-training was limited to segmentation tasks due to the
scarcity of large 3D medical detection datasets, though segmentation annota-
tions could be converted for detection. Whether organ detection pre-training
truly enhances lesion detection remains questionable. Furthermore, similar to
Baumgartuer et al. [4], we observed high variability across tasks, which pre-
vented us from identifying a single pre-training architecture combination that
consistently outperformed all others. Finally, future work should investigate per-
formance in low-data regimes and explore efficient fine-tuning strategies such as
linear probing or LoRA, as these aspects were beyond the scope of this study.
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