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Abstract. 4D Flow MRI is a promising imaging sequence that provides
3D anatomy and velocity along the cardiac cycle. However, hemodynamic
biomarkers are susceptible to degradation due to the low resolution of
the imaging modality, which can compromise vessel segmentation. In this
study, we propose a novel deep-learning approach, named SURFR-Net,
that combines both super-resolution and segmentation tasks, leading to a
super-resolved segmentation. SURFR-Net is based on the RCAN super-
resolution network, modi�ed to handle a multi-task problem. A novel
handcraft feature, named Weighted Mean Frequencies (WMF), has been
introduced with the objective of assisting the network in di�erentiating
between pulsatile and non-pulsatile �uid regions. Moreover, we demon-
strate the use of WMF feature as input to enhance super-resolution and
provide a more relevant segmentation on 4D Flow MRI images. The
proposed solution has been shown to outperform the state-of-the-art so-
lution, SRFlow, in terms of direction and quanti�cation error on systolic
and diastolic times with a maximum gain of 4.1% in relative error. Fur-
thermore, this study demonstrates the bene�t of combining the super-
resolution with the segmentation in a multi-task framework on both out-
comes. In conclusion, the proposed solution has the capacity to facilitate
a super-resolved segmentation of the aorta, thereby potentially address-
ing the primary concern regarding 4D Flow MRI parietal biomarkers,
such as wall shear stress.
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1 Introduction

In the last decades, 4D Flow MRI emerged as a promising solution to observe
both the anatomy and velocity �eld within a 3D volume and along the cardiac
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cycle [8]. In practice, technological constraints lead to a compromise between
acquisition time, resolution and signal-to-noise ratio. Due to constrained acqui-
sition time in the clinical routine, the image resolution is generally the most
degraded parameter, eg. for a thoracic aorta approximately 2.5mm isotropic
(ISO) [8], along with the signal-to-noise ratio. Furthermore, some hemodynamic
biomarkers, based on velocity derivative, su�er particularly from noise and the
lack of resolution. In the case of the wall shear stress estimation, [6] demon-
strated the negative impact of both noise and resolution from 4D Flow MRI
images, and also the segmentation accuracy.

In the literature, the resolution and noise enhancement task has been tack-
led by di�erent strategies: image processing by inverse problem [7, 3] or deep
learning [5, 12]. These solutions have been designed to provide a super-resolved
velocity �eld without any segmentation information. Actually, these studies have
demonstrated quantitatively their performances particularly on the velocity �eld
super-resolution.

Hemodynamic biomarkers being impacted by both the resolution and the
segmentation accuracy [6], super-resolution approaches do not consider this part
of the error sources. One can consider using recent deep learning solutions for
segmentation that present promising performance [1, 2]. However, these solutions
rely on the 4D Flow MRI images and then provide a segmentation at the same
resolution.

As a contribution, we propose to combine both tasks of super-resolution and
segmentation in a deep learning framework named SURFR-Net. Both tasks have
to deal with the �uid and non-�uid areas, and we expect the features to better
generalize these areas. Moreover, the resulting segmentation is obtained at the
super-resolved resolution contrary to state-of-the-art solutions [1, 2]. Besides, we
introduce the handcraft feature, called Weighted Mean Frequencies, as an input
to provide temporal information in our time independent solution. The proposed
model SURFR-Net is presented in Sec. 2 and results are discussed in Sec. 3.

2 Method

2.1 Data

The proposed solution relies on two di�erent image types for both training and
evaluation: synthetic images for the velocity super-resolution task and 4D Flow
MRI images along with their associated masks for the segmentation task.

In �uid mechanics, Computational Fluid Dynamics (CFD) simulations are
considered as reference to characterize small scale velocity pattern [10]. In this
work, CFD simulations have been used to generate synthetic 4D Flow MRI
images. As CFD data, we choose the public dataset and the data preprocess
used in Ferdian et al. (2020) [4] (data are under licence CC-BY 4.0). Dataset is
composed of 3 CFD simulations where each of them used a di�erent geometry.
First geometry, named aorta01, was acquired from a healthy volunteer meanwhile
aorta02 and aorta03 present a coarctation of the aorta. For CFD data, we use the
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same data preparation method as Ferdian et al. (2020) [4]. CFD are downsampled
directly in the k-space (MRI domain acquisition) to produce low resolution and
noisy CFD, ie. synthetic 4D Flow MRI data.

MRI data are constituted of 9 1.5T images from patients who presented a
cardiovascular event. The research was carried out following the principles of
the Declaration of Helsinki. These images are only used for the segmentation
task. The segmentations were made for one timeframe of the images, and then
recopied for each timeframe. Segmentations were done on clinical resolution MRI
since high-resolution images were not available. The low resolution segmentations
are upsampled by a factor of 2 using nearest neighbour interpolation. As these
images are only used for the segmentation task, we don't need any phase high
resolution image.

For the split between training and validation, aorta01, aorta02 and seven
MRI volumes are used as training data meanwhile aorta03 and two MRI images
for validation. Patches with a sized of 32 × 32 × 16 are extracted from CFD
and MRI data. CFD images are cut into 10 patches per timeframe leading to a
total number of patch of 710 for one CFD simulation. By timeframe, 9 of the 10
patches have to be covered by at least 20% of the �uid domain. For validation on
CFD, one patch is extracted per timeframe respecting the above �uid covering
condition. For MRI data, �ve patches are taken per timeframe where each one
has to be covered by 5% of �uid domain for training and validation.

Data augmentation is carried out on CFD patches. We apply 5 rotations on
the patches to increase the data. The �ve rotations are those that keep the patch
at a size of 32× 32× 16.

The testing is made on the full image of aorta03. The entire image is cut into
32×32×16 patches with a stride of [28, 28, 12], respectively, for each axis, to avoid
border e�ects. As mentioned before, this image is also used in the validation set.
It creates an overlap between sets, but since only one patch per time frame is
present in the validation set, the overlap is very small (about 1%).

2.2 Weighted Mean Frequencies

The proposed super-resolution approach deals only with 3D volume. In order
to provide temporal and quantitative information for each voxel in the volume,
we developed a new feature called Weighted Mean Frequencies (WMF). The
advantage of that feature has been assessed in a former study [9]. WMF provides
an image of the most contributing frequency at the voxel scale. Thus, WMF is
particularly e�cient to assist neural networks in identifying every voxel with is
a pulsatile velocity.

More precisely, WMF is the mean of frequencies weighted by Fourier energies.
Firstly, we compute the Fourier transform energies applied on u de�ned as

E(u) = |FT(u)|2, (1)

where u is a phase component and FT is the Fast Fourier Transform. Then, we
calculate the mean of the frequencies weighted by the energies of the Fourier
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transform as

WMF(u) =

∑n
i=1 Ei(u)fi∑n
i=1 Ei(u)

, (2)

where WMF(u) is the weighted mean result of the u component, fi is the i-th
frequency and n is the number of strictly positive frequencies. This image is
computed for each velocity component. Lowest frequencies reveal the pulsatile
�ow areas. Thus, the three WMF are merged into one feature WMFmin by taking
the minimum frequency at the voxel scale such as:

WMFmin = min(WMFu,WMFv,WMFw) (3)

Consequently, WMFmin provides a representation of the overall temporal dy-
namics of the image. In the presented framework, WMFmin is computed for
every CFD and 4D Flow MRI images.

Figure 1 shows the WMF images applied to 4D Flow MRI data. Darker areas
represent pixels with the lower WMF value, ie. pixel where the most contributing
frequency is the lower. In fact, this area is representative of the hull of all pulsatile
velocity voxels. For the sake of clarity, we will refer to WMFmin as WMF in the
rest of the paper.

(a) WMFu (b) WMFv (c) WMFw (d) Min(WMFu,v,w)

Fig. 1: Images (a), (b), (c) represent the result of WMF for each phase component
and (d) is the image obtained using WMFmin. Darker areas represent pixels with
the lower WMF value.

2.3 Multi-task Network SURFR-Net

The SURFR-Net (Segmentation, sUper-Resolution, Flow Reconstruction NET-

work) is using as input the three velocity components (u, v, w) and the WMF
image. Inputs are passed to two consecutive 3D convolutions with kernel 3×3×3
to extract features (each convolution is followed by a ReLU layer). Features are
then passed through a RCAN backbone [13] to extract deep and high-level fea-
tures. RCAN uses a long skip connection to maintain a link between low- and
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high-level features. The number of residual blocks and residual groups for RCAN
backbone is set at 3 for both.

For upsampling module, Pixel Shu�e [11] is used as RCAN does in the origi-
nal architecture. After upsampling module, a convolution 3×3×3 and a ReLU ac-
tivation function is used to reduce checkerboard artefacts. Four output branches
are set, with the �rst three branches dedicated to the reconstruction of the three
velocity components u, v and w. Each of them is composed of 2 convolutions
3 × 3 × 3 with a ReLU activation layer between them. The last branch is ded-
icated to the segmentation task. It is composed of a convolution of kernel size
1 × 1 × 1 that merges features to create the segmentation map, followed by a
sigmoid layer to hold values between 0 and 1.

2.4 Loss function

In this study, a composed loss function was employed to train the segmentation
and super-resolution tasks, given the objective of identifying two distinct tasks.
The L1 loss was employed for the super-resolution task and the segmentation
task was trained using a Binary Cross Entropy loss. The total loss is de�ned as

Loss = 1CFDL1 + αLseg, (4)

where α weights the loss dedicated to the segmentation. Super-resolution loss
has been exclusively used for CFD data (using the indicator function 1CFD), and
its implementation in the context of 4D has been omitted, primarily due to the
absence of a ground truth.

2.5 Metrics

To evaluate super-resolution results, we choose four metrics from the state-of-
the-art [4, 12]: the relative error Erel, the peak velocity-to-noise ratio (PVNR), the
normalized root mean squared error of speed nRMSspeed and the direction error
Edir. Relative error Erel and PVNR are metrics that measure the reconstruction
precision. The �rst one is particularly sensitive to errors on low velocity voxels.
Besides, PVNR provides a global evaluation of the quanti�cation error of all
velocity vectors in magnitude and direction. The nRMSspeed metric calculates
the quanti�cation error in terms of velocity norm only; in contrast, Edir quanti�es
the vector direction error. Segmentation is evaluated with the IoU metric.

3 Results and Discussion

3.1 Implementation

The network was implemented using Python (v3.12.6) and PyTorch (v2.4.1) as
deep learning library. A learning rate of 0.0001, Adam optimizer and a batch
size of 32 were set for training hyper-parameters. A Nvidia A100 80 GB and
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CUDA (v12.1) were used for training. For CFD data downsampling, we used the
Python script of Ferdian et al. (2020) [4].

As comparison, SRFlow [12] has been implemented and trained only with
CFD data, a patch size of 16 × 16 × 16 and a data augmentation using the
nine possible rotations. SRFlow network is only dedicated to super-resolution
task. For the sake of �delity, the original losses were employed: L1 for velocity
mismatch and mpL1 that penalize directional error. This approach was selected
due to the presence of a close network architecture with a channel attention
mechanism and long skip connection.

3.2 Quantitative performance

Table 1 shows the results obtained for di�erent networks and loss con�gurations
at the peak systolic frame (10th), the frame with the highest blood speed during
the systolic phase, and at a low diastolic frame (32nd), a frame arbitrary chosen
during the diastolic phase. Performance indicators are evaluated on the aorta3

geometry which is used as a test set. In order to set the segmentation loss weight,
a grid search has been conducted and led to an optimal α of 0.02.

Considering the loss function (eq. 4), the multi-task architecture, and the
available ground-truth, the velocity super-resolution criterion relies only on the
CFD simulation and the segmentation loss has no direct impact on velocity
quanti�cation. Consequently, the optimal performance with α = 0.02 reveal the
bene�t of the segmentation task to the velocity super-resolution task. Thus, the
velocity super-resolution is guided by the segmentation that explicit the �uid
and non-�uid areas.

The proposed solution SURFR-Net outperforms the state-of-the-art deep
learning approach SRFlow [4]. SURFR-Net is 0.6 and 4.13% better than SRFlow
in relative error, respectively, in systolic and diastolic phases. It demonstrates
the ability of SURFR-Net to properly quantify low velocity �eld. Moreover, this
improvement is con�rmed by the quanti�cation metrics PVNR and nRMSspeed
with a gain of up to 2.57 dB and 1% in the diastolic phase. The directional error
metric Edir shows that SURFR-Net is particularly more e�cient to estimate low
velocity with complex directional patterns.

Then, the super-resolution performance has been evaluated with regard to
the handcraft feature WMF. That feature is essential to outperform the state-
of-the-art solution SRFlow. Without WMF, the network relies only on velocity
to identify �uid regions. Thus, the network can be misled by low and steady
velocity regions which might be either a �uid recirculation or a non-�uid area
with high anatomic signal (with a lower velocity standard deviation). This point
is discussed particularly in the next section.

Based on the IoU performances in Table 1, one can observe the high segmen-
tation performance with a minimum IoU of 0.959. However, this evaluation is
focused on the synthetic 4D Flow MRI images created from the CFD simulation.
SURFR-Net performs particularly well in that context because the velocity in
the non-�uid areas is only characterize by noise. Consequently, one can assume



Super-resolution and segmentation of 4D Flow MRI using DL and WMF 7

Table 1: Results of di�erent approaches for systolic peak and a diastolic frame on
CFD test set. Best and second best results are bold and underlined respectively.
*SRFlow is trained without 4D Flow MRI images, no segmentation task and a
patch size of 16× 16× 16 .

Network
Peak Systolic

Erel ↓ PVNR ↑ nRMSspeed ↓ Edir(10−3) ↓ IoU↑
Our (α = 0.05) 8.82± 16.48 27.39 0.0360 5.5± 58.0 0.936

Our (α = 0.03) 8.13± 15.51 27.61 0.0350 5.2± 58.0 0.944

Our (α = 0.02) 6.71± 12.73 29.10 0.0281 4.4± 51.1 0.959

Our (α = 0.01) 8.70± 16.51 27.42 0.0359 5.1± 57.0 0.930

Our (α = 0.005) 8.60± 15.78 27.73 0.0340 5.0± 54.3 0.942

Our (w/o WMF, α = 0.05) 8.63± 16.20 26.86 0.0390 5.5± 57.6 0.935

Our (w/o WMF, α = 0.02) 9.72± 17.79 25.47 0.0472 6.3± 63.4 0.917

Our (w/o WMF, α = 0.005) 9.23± 16.95 25.70 0.0464 5.9± 61.6 0.931

SRFlow* 7.31± 14.25 27.34 0.0367 5.2± 58.1 /

Network
Low Diastolic

Erel ↓ PVNR ↑ nRMSspeed ↓ Edir(10−3) ↓ IoU↑
Our (α = 0.05) 18.60± 19.61 26.54 0.0388 23.5± 121.4 0.947

Our (α = 0.03) 18.63± 19.91 25.98 0.0429 22.2± 115.9 0.944

Our (α = 0.02) 15.46± 16.85 28.46 0.0314 16.8± 100.9 0.965

Our (α = 0.01) 18.50± 19.99 26.28 0.0396 24.9± 128.4 0.941

Our (α = 0.005) 18.33± 19.84 26.32 0.0388 24.8± 128.5 0.946

Our (w/o WMF, α = 0.05) 20.18± 20.99 25.63 0.0435 27.8± 132.7 0.921

Our (w/o WMF, α = 0.02) 21.47± 22.48 23.99 0.0530 33.0± 153.0 0.932

Our (w/o WMF, α = 0.005) 20.13± 21.13 25.22 0.0463 28.0± 137.9 0.945

SRFlow* 19.59± 20.31 25.89 0.0418 25.5± 123.5 /

lower performance on 4D Flow MRI images. Interpolated mask from low reso-
lution 4D Flow MRI images, were used in the training, instead of ground truth
super-resolved mask, to fuel the network with more complex velocity �eld. Thus,
it has been considered as too imprecise to present IoU performance over 4D Flow
MRI images.

3.3 Qualitative evaluation of SR segmentation

Figure 2 shows segmentations obtained by using our approach on a real 4D Flow
MRI. Due to the unavailability of high-resolution MRI and the necessary metrics
for evaluating the results, a qualitative evaluation will be conducted. Segmenta-
tions are obtained by training the SURFR-Net with the hyperparameter α set
to 0.02 and, the WMF is used as input in Fig. 2b or not as in Fig. 2c.

The segmentation of the vessels (�uid domain) obtained using WMF as input
is visually close to the vessels, particularly the aorta, as seen in the anatomical
image. In Fig. 2b, the network appears to encounter greater di�culty in isolating
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(a) Anatomy (b) with WMF (c) w/o WMF

Fig. 2: Anatomical image and segmentations produced by the network with
α = 0.02 with and without WMF as input. Segmentations are made for phase
images at the beginning of the diastolic phase.

the brachiocephalic trunk on the upper left side of the aortic arch, the pulmonary
trunk and the heart ventricles. This phenomenon may be attributed to the util-
isation of phase images captured during the diastolic phase, which inherently
exhibit lower velocities. Moreover, in this multi-task framework, SURFR-Net
relies primarily on the velocity to determine the voxel containing �uid. Concur-
rently, WMF input assists in the exclusion of voxels where �ow pulsatility is
negligible (see the bottom of Fig. 2c). As observed in Fig. 2b, the absence of
the heart in the segmentation using WMF can be attributed to the absence of
ventricle segmentation in the training. As illustrated in Fig. 2c, in the absence of
WMF as an input, the network experiences signi�cant challenges in delineating
�uid and non-�uid zones. The network successfully identi�es the region of the
heart ventricles. However, it incorrectly identi�es other areas where blood �ow
is absent.

As evidenced by this observation, the WMF contributes signi�cantly to the
segmentation of �uid zones in 4D Flow MRI. It is important to provide infor-
mation on global �uid dynamics in MRI scans to ensure that the network does
not mistake noise for highly turbulent or low-speed �uid zones.

4 Conclusion

In the present study, a novel approach for 4D Flow MRI is proposed, which
has the capacity to facilitate super-resolution and high-resolution segmentation.
The capacity of the network is utilised to denoise the non-�uid domain, thereby
facilitating the extraction of features. These features are then employed to guide
a segmentation process, which is further constrained by a super-resolution and
a segmentation loss. The Weighted Mean Frequencies (WMF) technique is a
manually crafted feature that delineates the pulsatility of the �uid domain in
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the volume. This facilitates network segmentation of the 4D Flow MRI data set
exclusively through phase images.

Moreover, the proposed approach is based on a relatively early attention
architecture. A more recent backbone could enhance the latent space represen-
tation and the resulting performance. In that study, the dataset size is limited
and a larger one could facilitate more complex contrast contexts. Further investi-
gation should be conducted to evaluate the impact on biomarker quanti�cation.
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