
Distribution-Guided Multi-Tracer Brain PET
Synthesis from Structural MRI with
Class-Conditioned Weighted Diffusion

Minhui Yu1,2, David S. Lalush2, Derek C. Monroe3, Kelly S. Giovanello4, Weili
Lin1, Pew-Thian Yap1, Jason P Mihalik3, and Mingxia Liu1∗

1 Department of Radiology and Biomedical Research Imaging Center, University of
North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC 27599, USA

2 Lampe Joint Department of Biomedical Engineering, UNC-CH and North Carolina
State University, Chapel Hill, NC 27599, USA

3 Department of Exercise and Sport Science, UNC-CH, Chapel Hill, NC, USA
4 Department of Psychology and Neuroscience, UNC-CH, Chapel Hill, NC, USA

∗Corresponding author (mingxia liu@med.unc.edu)

Abstract. Multi-tracer positron emission tomography (PET), which as-
sesses key neurological biomarkers such as tau pathology, neuroinflam-
matory, β-amyloid deposition, and glucose metabolism, plays a vital role
in diagnosing neurological disorders by providing complementary insights
into the brain’s molecular and functional state. Acquiring multi-tracer
PET scans remains challenging due to high costs, radiation exposure,
and limited tracer availability. Recent studies have attempted to synthe-
size multi-tracer PET images from structural MRI. However, these ap-
proaches typically either rely on direct mappings to individual tracers or
lack distributional constraints, leading to inconsistencies in image quality
across tracers. To this end, we propose a normalized diffusion framework
(NDF) to generate high-quality multi-tracer PET images from a single
MRI through a distribution-guided class-conditioned weighted diffusion
model. Specifically, a diffusion model conditioned on MRI and tracer-
specific class labels is trained to synthesize PET images of multiple trac-
ers, and a pre-trained normalizing flow model refines these outputs by
mapping them into a shared distribution space. This mapping ensures
that the subject-specific high-level features across different PET trac-
ers are preserved, resulting in more consistent and accurate synthesis.
Experiments on a total of 425 subjects with multi-tracer PET scans
demonstrate that our NDF outperforms current state-of-the-art meth-
ods, indicating its potential for advancing multi-tracer PET synthesis.
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1 Introduction

Neurological disorders, such as Alzheimer’s disease (AD) and other neurodegen-
erative conditions, involve complex pathological processes that require advanced
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Fig. 1. Illustration of the proposed normalized diffusion framework (NDF) that syn-
thesizes multi-tracer PET images from a single T1-weighted MRI input.

imaging techniques for accurate diagnosis and progression monitoring [1–5].
Multi-tracer positron emission tomography (PET) is a powerful tool that enables
the assessment of multiple molecular and functional biomarkers, providing com-
plementary insights into brain pathology. For example, PET imaging is widely
used to study Tau pathology with 18F-T807 [6], neuroinflammatory with 18F-
PBR111 [7], β-amyloid deposition with 11C-PIB [8] and glucose metabolism with
18F-FDG [9]. While each tracer highlights distinct pathological processes, they
collectively contribute to comprehensive understanding of neurodegeneration.

Despite the advantages, multi-tracer PET imaging faces significant challenges
in clinical and research settings due to high costs, radiation exposure, and limited
tracer availability. Recent studies have explored deep learning-based methods to
synthesize PET images from structural MRI as a cost-effective and non-invasive
alternative. However, existing approaches often rely on direct MRI-to-PET map-
pings for single-tracer PET synthesis [10–14]. Even though several studies [15,16]
have proposed to generate multi-tracer PET images, they typically lack explicit
distributional constraints, which could lead to inconsistent image quality and
reduced reliability across synthesized multi-tracer PET images.

To this end, we propose a normalized diffusion framework (NDF) to gener-
ate multi-tracer PET images from a single T1-weighted (T1) MRI through a
distribution-guided diffusion model. As shown in Fig. 1 (a), the input 3D MRI
and PET images are first encoded to a latent space. Then, a class-conditioned
weighted diffusion (CWD) model simulates Markov chain transitions to generate
latent PET features by iteratively refining a Gaussian noise, conditioned on the
latent MRI representation and tracer-specific class labels. The synthesized latent
PET features are then decoded into PET images. A pretrained normalizing flow
(NF) model simultaneously constrains the training process, guiding the decoded
images across tracers to align with a normal distribution. This ensures that syn-
thetic PET images match the target tracer distribution. Experimental results
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on a total of 425 subjects with multi-tracer PET scans validate the superiority
of our method over the current state-of-the-art (SOTA) methods.

2 Materials and Methodology

Subjects and Image Preprocessing. Two datasets are involved in this work.
(1) NFL-LONG [17], which includes 132 all-male subjects with an average age
of 60.49 ± 6.24. Random tracers are missing for some subjects due to various
reasons, resulting in different numbers of subjects for each modality pairing: 114
subjects had both T1 MRI and PBR-PET images, 90 subjects had both T1 MRI
and PIB-PET images, and 97 subjects had both T1 MRI and TAU-PET images.
PET preprocessing involves initial rigid alignment of PET scans to each subject’s
T1 MR image (subject space), followed by nonlinear transformation of images
to a standardized MNI space. All PET images from this dataset are processed
to have the resolution of 2 × 2 × 2 mm3. A common MNI brain mask is then
applied to each image for skull stripping. (2) The public ADNI dataset [18] with
293 cognitively normal subjects (141 female, 152 male; average age 74.21±5.97)
with paired MRI and FDG-PET data. MR image preprocessing involves skull
stripping, intensity normalization, and nonlinear registration to the MNI space.
PET images undergo initial skull stripping, followed by linear alignment to their
corresponding MR images, and are subsequently registered to MNI using the
MRI-derived deformation fields. To exclude non-informative background regions
while preserving the complete brain, images from both datasets are uniformly
cropped to 80 × 96 × 80. Image intensities are normalized to the range [−1, 1]
during training, and [0, 1] for quantitative and qualitative evaluation.

Proposed Method. Our normalized diffusion framework (NDF) synthesizes
multi-tracer PET images from a single MRI input. As illustrated in Fig. 1, it
consists of three key components: (1) a latent space encoding and decoding, (2)
a class-conditioned weighted diffusion (CWD) model for latent PET generation,
and (3) a pretrained normalizing flow (NF) model for distribution alignment.

(1) Latent Space Encoding and Decoding. To ensure computation effi-
ciency, an autoencoder with an encoder and a decoder is pretrained to transform
PET images into a compact latent representation, reducing the spatial resolution
from 80×96×480 to 10×12×10. The encoder maps the input into latent space,
while the decoder reconstructs it back into a 3D PET image. The autoencoder
training is initially guided by an l1 loss, a perceptual loss, and a Kullback-Leibler
divergence loss [19]. After a 15-epoch warm-up, a patch-based adversarial loss is
introduced to further refine the model through adversarial training.

(2) Latent PET Generation with CWD. A class-conditioned weighted
diffusion (CWD) model is used to synthesize latent PET from latent MRI [13].
The proposed CWD model learns to progressively denoise Gaussian noise into
meaningful PET features. This process follows a Markov chain transition model,
conditioned on the encoded MRI latent features and tracer-specific class labels
(with each tracer corresponding to a specific class). In the training phase, the
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pretrained encoder maps both MRI and PET images into the latent space, pro-
ducing corresponding latent features ZM and Z0

P as inputs to the CWD model.
At each training step, a timestep t is randomly chosen from 1 to 1, 000, and
a Gaussian noise ϵ ∼ N(0, 1) is introduced to Z0

P to create the noisy Zt
P at

timestep t according to a noise scheduler (NS), formulated as:

Zt
P =

√
ᾱtZ0

P + ϵ
√
1− ᾱt. (1)

The corrupted PET latent representation is then concatenated with MRI (ZM )
and input into a convolutional neural network to predict the added noise ϵ.
With the predicted noise ϵ̃, we can reformulate Eq. (1) to derive the l1 difference
between predicted latent PET Z̃0

P and actual latent PET Z0
P :

LW = Z0
P − Z̃0

P =

√
1− ᾱt

√
ᾱt

|ϵ̃− ϵ|, (2)

where ᾱt :=
∏t

s=1 α
s is a time-dependent hyperparameter and | · | is the l1 loss.

Since the value of
√
1−ᾱt
√
ᾱt

increases monotonically with t, this loss LW provides

an adaptive weight for the noise loss ϵ̃− ϵ, leading to stronger penalty at larger
timesteps. This dynamic weighting improves training stability and image fidelity
since noise removal becomes increasingly challenging at later timesteps. The loss
for CWD contains the standard noise loss LN and weighted noise loss LW :

L1 = LN + LW = |ϵ̃− ϵ|+
√
1− ᾱt

√
ᾱt

|ϵ̃− ϵ|. (3)

During inference, a random noise serves as CWD’s input at the largest timestep
Zt=1000
P and is fed into the CWDmodel together with the encoded MRI to predict

the noise at the previous step. The predicted noise ϵ̃ is then removed by inverse
NS to estimate the denoised PET latent representation Zt−1

P . This process is
repeated 1, 000 times, gradually removing noise from PET representation. We
obtain Z̃0

P at the final timestep, which is the estimated PET latent features and
is then decoded by the pre-trained decoder to generate a synthesized PET.

(3) Distribution Alignment with NF. We aim for synthesized PET im-
ages to be both realistic and consistent with true PET distributions, which is
an objective that prior related works have not explicitly addressed. To achieve
this, we introduce a separately trained normalizing flow (NF) module [20] that
learns a bijective mapping from real PET images to a Gaussian latent space.
During training, synthesized PET images are passed through the NF, and their
log-likelihoods are computed based on how closely their transformed representa-
tions align with the Gaussian prior. Unrealistic or distributionally inconsistent
outputs are assigned lower likelihoods and penalized accordingly. In this way, the
NF module serves as a distributional constraint, guiding the model to generate
multi-tracer PET images with improved fidelity and consistency. Technically,
we first dequantize the synthesized PET and employ a sequence of eight cou-
pling layers to construct a bijective transformation function. These coupling
layers split the input into two partitions, where one remains unchanged while
the other undergoes an affine transformation parameterized by neural networks
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Fig. 2. Visualization of test PET images of 3 tracers – TAU (a), PBR (b), PIB (c) –
synthesized by 8 methods, and difference (Diff) maps. The ground-truth PET images
and input T1 MRI are displayed at the bottom with the corresponding subject ID.

that generate shift and scale factors. During pretraining, the NF model is op-
timized to maximize the likelihood that the mapped output follows a normal
distribution. Once pretrained, NF is frozen and serves as a guiding constraint
in NDF, where the CWD model is trained to maximize this likelihood, ensuring
that the synthesized PET images align with the target tracer distribution.

Model Extension. We further extend NDF as NDF-I, which directly takes 3D
MRI and PET scans as inputs instead of their latent representations. Different
from the weighed loss in Eq. (2), we create an image-level constraint, formulated
as LI = |X0

P − X̃0
P |, where X0

P and X̃0
P denote the original PET image and the

generated one at each step. This modification enables the model to operate in
the original image space rather than a compressed latent space, potentially pre-
serving more fine-grained details in synthesized PET images. NDF-I is optimized
by minimizing this objective function: L2 = LN + LI .

Implementation Details. We design a four-stage training strategy for NDF:
(1) autoencoder pertaining (200 epochs) with PET images from all tracers to
learn a compact latent representation, (2) CWD model training (100 epochs)
with the frozen autoencoder to establish initial weights, (3) NF model pretrain-
ing (200 epochs) using all training PET data to learn a distribution mapping for
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Fig. 3. Test images of FDG-PET synthesized by 8 methods and difference (Diff) maps.

PET images, and (4) CWD model retraining (100 epochs) with the pretrained
NF model as a distribution constraint and the autoencoder weights for feature
extraction. NDF-I follows only the last two stages. We use 90% of the data for
training and 10% for testing. Subjects with complete data (T1 MRI, PBR-, PIB-,
and TAU-PET in the private dataset; T1 MRI and FDG-PET in ADNI) are in-
cluded in the test set. FDG-PET data, three times larger than other tracers, has
its loss down-weighted by ten to avoid dominating training and ensure balanced
optimization across tracers. NDF and NDF-I are implemented in PyTorch and
trained on a cluster with 4 NVIDIA H100 GPUs (each with 80 GB of memory).
The diffusion process consists of 1,000 iterative steps during inference, yet NDF
achieves an efficient inference speed of approximately 0.5 seconds per image.

3 Experiment

Experimental Settings. Four evaluation metrics are employed: peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM), mean absolute error
(MAE), and normalized mutual information (NMI). Before evaluation, we re-
store the synthesized images to their original dimensions through padding. Six
methods are used for comparison. (1) GAN [14]: A generative adversarial net-
work trained with adversarial and l1 losses, producing a four-channel output
for multi-tracer PET synthesis. (2) C-GAN [16]: A conditional GAN that con-
catenates tracer labels with the input and employs cycle-consisitency loss along-
side adversarial and l1 losses. (3) V-GAN [21]: A variational autoencoder-GAN
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Table 1. Quantitative results achieved by NDF, NDF-I and six competing methods
for TAU-, PBR-, PIB-, and FDG-PET generation, with best results shown in bold.

Method
Synthesized TAU-PET Image Synthesized PBR-PET Image

PSNR↑ SSIM↑ MAE↓ NMI↑ PSNR↑ SSIM↑ MAE↓ NMI↑

GAN 27.932±2.454 0.851±0.021 0.017±0.006 0.579±0.008 28.339±2.519 0.831±0.018 0.016±0.006 0.585±0.008
C-GAN 27.038±2.763 0.831±0.037 0.019±0.007 0.594±0.011 28.065±2.687 0.833±0.022 0.017±0.007 0.594±0.007
V-GAN 28.451±2.591 0.850±0.032 0.016±0.006 0.603±0.016 29.701±1.953 0.841±0.019 0.013±0.004 0.594±0.013
LDM 28.887±2.756 0.861±0.027 0.016±0.006 0.602±0.014 29.848±1.608 0.855±0.014 0.013±0.003 0.594±0.007
DDPM 14.082±1.854 0.735±0.024 0.100±0.020 0.595±0.011 15.544±0.841 0.749±0.012 0.083±0.008 0.599±0.013
NFS 28.425±4.210 0.849±0.045 0.017±0.011 0.592±0.010 29.010±1.880 0.842±0.018 0.014±0.004 0.581±0.004
NDF-I 25.259±2.729 0.853±0.025 0.026±0.009 0.614±0.200 27.747±1.607 0.858±0.012 0.018±0.004 0.610±0.013
NDF 29.374±2.3490.866±0.0220.014±0.005 0.603±0.016 29.870±1.549 0.855±0.016 0.013±0.003 0.592±0.009

Method
Synthesized PIB-PET Image Synthesized FDG-PET Image

PSNR↑ SSIM↑ MAE↓ NMI↑ PSNR↑ SSIM↑ MAE↓ NMI↑

GAN 25.357±0.777 0.816±0.013 0.021±0.002 0.630±0.017 26.075±1.168 0.887±0.021 0.022±0.003 0.804±0.040
C-GAN 24.951±1.373 0.815±0.018 0.022±0.004 0.633±0.020 26.174±1.428 0.885±0.021 0.022±0.004 0.808±0.033
V-GAN 26.713±1.198 0.833±0.017 0.018±0.003 0.664±0.025 25.703±0.848 0.870±0.019 0.022±0.002 0.777±0.025
LDM 25.637±1.625 0.830±0.016 0.021±0.004 0.651±0.021 26.533±1.016 0.875±0.019 0.020±0.003 0.806±0.029
DDPM 16.699±1.279 0.743±0.018 0.071±0.012 0.640±0.022 18.199±1.029 0.795±0.028 0.061±0.008 0.799±0.033
NFS 24.522±1.304 0.805±0.017 0.024±0.004 0.614±0.015 26.706±1.065 0.877±0.023 0.020±0.003 0.809±0.032
NDF-I 25.452±1.749 0.847±0.020 0.022±0.006 0.673±0.030 26.572±1.106 0.894±0.0220.020±0.0030.813±0.035
NDF 26.038±0.832 0.828±0.013 0.020±0.003 0.645±0.018 26.516±1.180 0.875±0.020 0.021±0.003 0.808±0.033

hybrid, where a VAE serves as the generator, and a discriminator is used for
adversarial training. (4) DDPM [22]: A denoising diffusion probabilistic model
(DDPM) that learns a reverse denoising process within a Markov chain, con-
ditioned by tracer labels and MRI inputs. (5) LDM [19, 23]: A latent diffusion
model that encodes images into a compact latent space (10×12×10) before ap-
plying diffusion-based modality translation. The pretrained encoder and decoder
are the same as those used in our NDF. (6) NFS [20]: A normalizing flow-based
model trained end-to-end, leveraging normalizing flows to guide PET synthesis.

Qualitative Results. Figure 2 and Figure 3 present axial slices of PET images
generated by NDF, NDF-I, and six comparison methods on the two datasets,
alongside the ground-truth PET and input T1 MRI displayed at the bottom.
The difference (Diff) maps between each synthesized PET and its ground truth
are displayed beside each image. As can be observed from Figs. 2-3, the proposed
NDF and NDF-I generally produce higher-quality PET images compared to the
competing methods. While the GAN model generates visually realistic images,
the results generally lack variability, resulting in highly similar synthesized PET
images across different subjects for the same tracer. This issue is also observed
in the results of V-GAN and NFD, suggesting that those methods struggle to
fully capture subject-specific characteristics. C-GAN and LDM produce gener-
ally good results. However, their difference maps indicate less precise synthesis
compared to our NDF and NDF-I. Meanwhile, DDPM performs the worst, ex-
hibiting the most noticeable discrepancies and the least reliable synthesis.

Quantitative Results. Table 1 reports the quantitative results of eight meth-
ods for multi-tracer PET synthesis. This table shows that our method consis-
tently outperforms the competing methods, achieving the highest PSNR and
lowest MAE across most tracers. In TAU-PET synthesis, NDF improves PSNR
by 1.7% and reduces MAE by 12.5% compared to the second-best method LDM,
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demonstrating superior synthesizing accuracy. For PBR- and PIB-PET synthe-
sis, NDF-I attains the highest SSIM and NMI, indicating enhanced structural
fidelity. In FDG-PET synthesis, NDF-I achieves the highest SSIM and NMI,
while NDF maintains strong PSNR performance, showing the robustness of both
approaches. Additionally, GAN-based approaches (GAN, C-GAN, V-GAN) per-
form worse than diffusion-based models (LDM, DDPM, NDF-I, and NDF), while
DDPM exhibits the weakest performance. NFS achieves competitive results but
is still outperformed by NDF and NDF-I, demonstrating the advantage of nor-
malizing flow-guided diffusion models in PET synthesis.

Ablation Study. To assess the impact of key components in our framework,
we conduct an ablation study on both NDF and NDF-I, evaluating their perfor-
mance under three different settings: (1) w/oTC having the tracer label input
removed, making the model rely solely on MRI input; (2) w/oWL having the
dynamic weighting noise loss omitted; and (3) w/oNF having the normalizing
flow guiding removed during training. For a fair comparison, these variants share
the same architecture as NDF. The quantitative results are reported in Table 2.

Results in Table 2 suggest that removing tracer labels leads to a notable
drop in PSNR and a rise in MAE, especially in TAU- and PBR-PET synthe-
sis, highlighting its importance for tracer-specific PET synthesis. Excluding WL
significantly degrades performance, particularly in NDF-I, confirming its role in
stabilizing training. Removing NF generally lowers synthesis quality, especially
in TAU and PBR for NDF-I, showing its importance in output regularization.
The greater improvement observed in NDF-I compared to NDF when incorpo-
rating NF is likely due to the distribution regulation being applied at the image
level. Since NDF-I directly generates images, whereas NDF needs to decode
synthesized latent PET features into images, the normalization flow may have
a more direct influence on preserving distributional consistency and enhancing
image fidelity in NDF-I. Overall, the NDF and NDF-I models achieve the best
results, with NDF performing better in TAU-, PBR-, and PIB-PET synthesis
and NDF-I performing better in FDG-PET generation.

Influence of NF Quality. To evaluate the dependence of NDF on the quality
of the pretrained NF model, we conducted experiments using NFs trained for
10, 50, 100, 150, and 200 epochs. Across all tracers, the synthesis performance
remains stable, with only slight reductions in variance as the number of NF
training epochs increased. These results indicate that NDF is robust to variations
in NF quality. Briefly trained NFs are sufficient to guide effective PET synthesis.
Nonetheless, longe r-trained NFs yield marginally more consistent outputs.

4 Conclusion and Future Work

In this work, we propose NDF, a novel distribution-guided diffusion framework
for multi-tracer PET synthesis from a single MRI input. By leveraging a class-
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Table 2. Quantitative results achieved by NDF and NDF-I, as well as their degraded
variants for multi-tracer PET generation, with best results shown in bold.

Tracer & Method NDF NDF-I

PSNR↑ MAE↓ PSNR↑ MAE↓

TAU
w/oTC 25.6475±2.1807 0.0227±0.0071 22.1891±3.0992 0.0384±0.0154
w/oWL 27.7529±2.3563 0.0181±0.0062 18.8648±2.0542 0.0564±0.0142
w/oNF 28.8266±2.5574 0.0156±0.0055 23.5384±3.0300 0.0325±0.0119
Ours 29.3735±2.3491 0.0145±0.0048 25.2588±2.7285 0.0258±0.0093

PBR
w/oTC 25.9791±1.5066 0.0214±0.0045 22.6238±2.6865 0.0354±0.0107
w/oWL 29.7926±1.5012 0.0129±0.0024 19.6417±1.4108 0.0506±0.0089
w/oNF 29.9082±1.8321 0.0128±0.0033 24.8161±1.7490 0.0266±0.0063
Ours 29.8696±1.5485 0.0128±0.0025 27.7473±1.6069 0.0178±0.0042

PIB
w/oTC 25.5372±1.6282 0.0211±0.0043 23.2225±1.7521 0.0298±0.0076
w/oWL 25.8981±1.1692 0.0199±0.0025 18.6655±1.3171 0.0534±0.0101
w/oNF 25.7697±1.3491 0.0202±0.0028 25.3973±2.2005 0.0233±0.0080
Ours 26.0384±0.8315 0.0198±0.0025 25.4519±1.7489 0.0224±0.0055

FDG
w/oTC 26.5687±1.0881 0.0203±0.0029 20.7926±1.2528 0.0413±0.0070
w/oWL 26.5726±1.0236 0.0203±0.0027 20.0019±1.1389 0.0456±0.0063
w/oNF 26.2243±1.0349 0.0213±0.0029 25.8093±1.8916 0.0237±0.0055
Ours 26.5156±1.1800 0.0206±0.0032 26.5721±1.1058 0.0204±0.0029

conditioned latent diffusion model and a pretrained normalizing flow model, NDF
effectively captures tracer-specific PET features while ensuring anatomical con-
sistency. Extensive experiments demonstrate that NDF consistently outperforms
state-of-the-art methods, achieving superior performance across multiple PET
tracers. For future work, we could explore synthesizing between PET tracers to
enhance the model by incorporating molecular information.
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