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Abstract. Haustral folds can serve as important landmarks to localize
and navigate colonoscopes through the colon. Fold edges can be utilized
for tracking in 3D reconstruction algorithms to generate colonoscopy
coverage maps and ultimately reduce missed lesions. Current haustral
fold detection models struggle with debris-filled colonoscopy videos and
fail to maintain high temporal consistency due to their single-frame in-
put. We introduce HalF-SAM, a Haustral Fold detection model utilizing
the Segment Anything Model (SAM) image encoder, which suppresses
edges from specular reflection and fecal debris. The SAM2-based mem-
ory module enhances temporal consistency, which is essential for track-
ing. Our experiments have shown significant improvements in haustral
fold extraction accuracy and stability. We also release a training dataset
with automatically annotated haustral fold edges in debris-filled high-
fidelity colon phantom videos. The dataset and code will be available at:
https://github.com/DurrLab/HalFSAM.
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1 Introduction

Colorectal cancer is the second leading cause of cancer deaths in the United
States [1]. Colonoscopy remains the gold standard for screening and detecting
colorectal cancer. However, studies utilizing tandem colonoscopy have shown
that approximately 25% of lesions go undetected, highlighting the need for en-
hanced diagnostic quality of colonoscopy [2].

One primary reason for undetected polyps is ‘missed regions’ during colono-
scopic surveillance. Researchers have proposed employing 3D reconstruction meth-
ods, such as Simultaneous Localization and Mapping (SLAM), to generate a
topography of colon lumen, where “holes” would represent missed regions [3].
Unfortunately, traditional 3D reconstruction algorithms using standard feature
tracking methods have exhibited poor performance in colonoscopy. Challenging
factors include the textureless and highly specular nature of the colon surface, as
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well as dynamic imaging conditions caused by artifacts such as debris, bubbles,
and mucus, along with the deformation of the colon itself [4]. An alternative
strategy potentially improves tracking by utilizing haustral folds—protrusions
of the colon walls which act as reliable anatomical landmarks [5]. Haustral fold
edges remain relatively stable and distinct across frames, potentially serving as
reliable replacements for conventional feature points. Haustral folds can also aid
in determining the centerline of the colon lumen, offering valuable information
for navigating autonomous endoscopes [6]. Additionally, these folds represent
key points of depth discontinuities, and incorporating them as priors might en-
hance depth estimation models [7]. Overall, haustral folds can play a critical
role as landmarks to assist with localization, tracking, and navigation during
colonoscopic procedures.

In this work, we present HalF-SAM, a novel model for haustral fold edge
detection in colonoscopy videos, along with a synthetic data set incorporating
challenging colonoscopy conditions. Our contributions are as follows.

1. HalF-SAM Model: A new haustral fold edge detection model that incor-
porates the powerful SAM (Segment Anything Model) [8,9] image encoder
and memory into the DexiNed [10] framework. The model enhances edge
detection of haustral folds while reducing false positives from debris and
improving temporal consistency, even in cases with poor bowel preparation.

2. Multi-layer Memory Mechanism and Temporal Consistency: Our
model processes video sequences rather than individual frames, incorporat-
ing a multi-layer memory mechanism to enhance temporal consistency in
haustral fold detection. This approach could improve performance in down-
stream tasks such as longitudinal fold tracking for 3D reconstruction.

3. Haustral Fold Edge Detection Dataset: A comprehensive dataset of 113
videos featuring high-fidelity silicone colon phantoms. It includes challenging
conditions like fecal debris and dirty optics, aimed at improving algorithms
for reducing false positives in edge detection.

2 Related Works

Haustral Fold Detection Methods Early works primarily relied on tradi-
tional edge extraction techniques, often leveraging hand-crafted geometric and
curvature constraints for identifying haustral folds [11,12]. In contrast, recent
deep learning-based methods don’t require explicit geometric priors, potentially
improving generalizability across different haustral fold shapes and imaging con-
ditions. FoldIt model by Matthew et al. [13] utilized a generative adversarial
network to translate optical colonoscopy images into virtual colonoscopy images
with haustral fold overlays. They approached the task as a haustral fold semantic
segmentation problem. However, some limitations of this model included tem-
poral inconsistencies in segmentations, subpar performance in the presence of
colonic debris, and ambiguous haustral fold boundary annotations used during
training.



HalF-SAM: SAM-based Haustral Fold Detection 3

Jin et al. [5] proposed a self-supervised method for haustral fold detection.
Their approach involves generating pseudo-labels using the DexiNed edge de-
tection model, coupled with temporal inpainting to address specular reflections.
These pseudo-labels are then utilized to retrain the DexiNed model, incorporat-
ing a triplet loss to enhance the temporal consistency of edge detection. How-
ever, this model was primarily trained and tested on cases with clean bowel
preparation, resulting in a decline in performance under challenging conditions.
Additionally, the temporal consistency is upper-bounded since the model’s input
is a single image. In contrast, HalF-SAM takes video as input and was trained
on a dataset containing fecal debris.

Haustral Fold Detection Datasets A significant bottleneck in the develop-
ment of haustral fold detection models is the lack of substantial datasets. Jin et
al. [5] released a pseudo-labeled training dataset comprising 31 videos. However,
since the temporal inpainting method primarily addresses the artifact of specular
reflection, the resulting pseudo-labels contain false positive edges attributed to
debris, bubbles, and other factors. Recently, the SegCol challenge [14] introduced
a subtask focused on haustral fold detection, which utilized a dataset of 8,440
images. Unfortunately, access to this dataset was restricted to challenge partici-
pants. Our dataset can complement the SegCol dataset by increasing its quantity
and comprehensiveness, particularly in cases involving challenging debris-filled
environments.

3 HalF-SAM

We propose HalF-SAM, a novel edge detection framework designed for detect-
ing haustral folds in colonoscopy videos. The model overview is shown in Fig.
1. Our approach leverages the powerful pre-trained Segment Anything Model 2
(SAM2) [9] as the frame encoder backbone, while incorporating trainable adap-
tors for domain adaptation. Compared to existing edge extraction models, the
proposed HalF-SAM takes videos as inputs and enhances the temporal consis-
tency of haustral fold detection with the novel multi-layer memory mechanism.
This feature is particularly beneficial for downstream tasks such as longitudinal
fold tracking for full colon 3D reconstruction.

In the following sections, we elaborate on the adaptation of the SAM?2 encoder
for colonoscopy videos in Sec. 3.1, the multi-layer memory mechanism in Sec.
3.2, and the improved sequence loss for video-based edge detection in Sec. 3.3.

3.1 Adapted SAM2 Encoder for Colonoscopy Videos

Due to its large-scale pre-training on real-world video datasets, SAM2 is opti-
mized for sequential inputs and has demonstrated superior performance in object
and scene understanding. Its encoder has been successfully generalized to various
domains, particularly in different medical tasks. However, a significant challenge
in adapting SAM2 is the substantial computational burden resulting from its
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Fig. 1. HalF-SAM Overview. The proposed model follows an encoder-decoder architec-
ture, consisting of three major modules: 1) SAM-based frame encoder with adaptors; 2)
Haustral fold decoder with multi-layer Upblocks; 3) Multi-layer edge memory attention
modules.

large model size. To achieve efficient SAM2 adaptation on small datasets, the
SAM-adaptor has been proposed [15], and demonstrated impressive performance
on various tasks. Inspired by this work, we employ the frozen SAM encoder, pre-
trained Hiera [16], as our backbone and integrate the trainable adaptor layers for
domain-specific fine-tuning of SAM2 for haustral fold detection. As illustrated
in Fig. 1, we incorporate four adaptor layers (Adaptor Layer 1-4), injecting fine-
tuning weights Ag_3 at different backbone blocks with downsampling scales from
4 to 32.

For each colonoscopy frame input I; € R¥XWx3  the adapted encoder out-
puts four layers of feature maps Fjy € RH/FXW/kxXD that represent features
extracted at different resolutions:

Fuyx, Fax, Fiex, Faax = Hiera(ly; Ao—4)

To generate final haustral fold detection, we apply the UpBlocks, similar to US-
Net in DexiNed, to upsample feature maps to the original resolution Up(Fgx ) €
REXWXL through deconvolution layers. And then the upsampled features are
fused to generate the edge prediction £(I;) € RE*W>*1 The edge decoding pro-
cess could be expressed as:

E(I) = Convix1(Conct[Up(Fyx ), Up(Fsx ), Up(Fisx ), Up(F52x)])
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3.2 Multi-layer Memory Mechanism

As HalF-SAM takes colonoscopy videos as input, we introduce a temporal mem-
ory mechanism that propagates across video frames to enhance feature learning.
Inspired by SAM2, this mechanism addresses the challenge of inconsistent edge
predictions across frames, due to debris occlusion, reflection, and motion blurs,
by cross-attending current features with edge memory from nearby frames.

After the model extracts the edges at each timepoint, we use a memory en-
coder from SAM2, M(), to encode the current prediction into edge memory.
Since the haustral fold detection fuse features from different levels of resolu-
tion, we modify the memory encoder to generate multi-level memories My €
RH/kxW/ExDm to match the features:

Mix’MévafGXaM?EZx = M(g(jt))

The encoded memories are then stored in the memory bank, a First-In, First-
out queue. To save space for long video inference, the memory bank is limited
to storing memories up to NV recent frames. When the memory bank is full, the
earliest memories would be discarded.

When the memory bank is not empty at a timepoint ¢,, the model would
retrieve all memories from the memory bank. The memories are then stacked
within each level to M,i”x_lwtp_n_l e R H/kxW/kxDm  Then, the retrieved
memories are used to condition current features, before haustral fold decoding,

with vanilla attention of alternative self- and cross-attention [17]:
F]git _ Att(F’zi,M:f;_thp_n_l) c RH/kXW/kXD

Memory-conditioned features are fused to the output edge map prediction through
the same decoder.

3.3 Sequence Loss for Video-based Haustral Fold Detection

We supervised our network using the BDCN loss [18], a powerful loss function
for highly imbalanced detection tasks, such as edge extraction, between the pre-
dicted and ground-truth values. Given ground truth £y, the loss is calculated
including all upsampled maps and final fused edge prediction:

4,8,16,32

Lonuttitevel (E(1;), Egt) = Z wrLeponN (Up(Fix ), Egt)twolppon (E(1i), Egt)
%

To ensure our memory mechanism works effectively for the input sequence, we
calculate sequence loss over the full sequence of N predictions, with exponentially
increasing weights (7 = 0.8). The sequence loss is defined as

N
Eseq = Z ’)/Niiﬁmultilevel (g(Iz), Sgt)

i=1
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4 Experiments & Results

4.1 Dataset

We present a synthetic dataset for haustral fold detection that incorporates chal-
lenging conditions commonly encountered in real-world colonoscopy procedures
[19]. This dataset features scenarios such as the presence of fecal debris, mucous
pools, bubbles, rapid camera movements, and dirty lenses with lens cleaning
events. To create this dataset, we followed the procedure described by Bobrow
et al. [20], utilizing high-fidelity silicone colon phantoms to produce pixel-wise
paired RGB, depth, and flow frames.

Our data collection process involved recording two videos of the same phan-
tom using identical camera trajectories and settings: one clean colon and another
filled with debris. After synchronization, we obtained paired colonoscopy frames
corresponding to clean and debris-filled colon conditions. We then employed
DexiNed to extract edge frames from the clean colon RGB frames, debris-filled
colon RGB frames, and the registered depth frames. Since the depth frames
primarily contain edges from haustral folds, we used them as region of interest
(ROI) masks. Only edges present in all three images were retained, as they likely
belong to haustral folds. The dataset collection protocol is described in detail in
Golhar et al. [19].

Our dataset consists of 113 videos, with each video averaging 424 frames
(standard deviation: 175). We divided the dataset into training, validation, and
test splits, comprising 74, 15, and 24 videos, respectively. Each split contains
paired videos, with half of the videos depicting a clean colon and the other
half containing debris. Each debris-filled video contains fecal debris across all
frames. The dataset encompasses a range of haustral fold shapes (e.g., triangular,
elliptical, and irregular) and various camera poses (parallel, normal, oblique, and
laterally shifted relative to the centerline).

4.2 Evaluation Metrics

We frame haustral fold detection as an edge detection problem. We use standard
metrics prevalent in the field - Optimal Dataset Scale (ODS), Optimal Image
Scale (OIS), and Average Precision (AP) to assess the performance of our edge
detection models. ODS measures the best F-score achieved at a fixed threshold
across the entire dataset, while OIS reports the average best F-scores for each
individual image at an optimal threshold. Higher ODS and OIS indicate the
model has stronger edge extraction performance. And OIS is always higher than
ODS, since it allows flexible thresholds. If OIS is significantly higher than ODS,
it indicates that the algorithm requires more fine-tuning for each image, thereby
reducing its generalization ability and stability. On the other hand, if OIS is
roughly equal to ODS, the algorithm is robust and works well without much
threshold adjustment. AP evaluates the trade-off between precision and recall
across different thresholds.
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4.3 Implementation

HalF-SAM is trained on four NVIDIA RTX A5000 GPUs. During training, we
set the input sequence length to 5 frames and the number of memories to 4
frames. During inference, we input the whole video frame by frame, and the
number of memories is set to 4. The model is trained using the Adam optimizer
with an initial learning rate of le-4, which is decreased by a factor of 0.1 at
epochs 10 and 15. The weight decay for training was set to le-8. For the BDCN
loss, we set the layer weights [wo, w4, ws, wie, w32] to [1.5, 0.7, 1.1, 0.7, 0.3]. For
comparative experiments, we adapt the current SOTA haustral fold detection
models- DexiNed and the Self-Supervised DexiNed model by Jin et al. [5], on
the proposed dataset. We do not present results from the Foldlt model, as it
produces a broad haustral fold segmentation instead of thin edges, as discussed
by Jin et al. [5].

Quantitative Results of Comparative Experiments Table 1 illustrates
the superior performance of the Half~SAM model when compared to current
SOTA models. Notably, the Self-Supervised DexiNed model struggles to adapt
to our dataset, likely due to its training on relatively clean bowel cases. The
videos with debris introduce a new challenge to haustral fold detection. On the
other hand, supervised DexiNed demonstrated reasonable performance on our
dataset. Compared to DexiNed, HalF-SAM showed significant improvements in
ODS and OIS, suggesting more accurate segmentation in both clean video and
videos with debris. The lower OIS-ODS of HalF-SAM indicates a stable edge
extraction from the video dataset. However, HalF-SAM yields slightly lower
AP, due to the thicker edge predictions, which have little effect for downstream
applications.

Table 1. Quantitative Results for Haustral Fold Edge Detection

Method Test set|ODS (1) OIS (1) OIS-ODS ({)|AP (1)
Self-Supervised DexiNed [5] C+D | 0.314 0.325 0.011 0.259
DexiNed [10] C+D | 0.487 0.552 0.065 0.404
Frozen SAM2 Encoder + Decoder C+D 0.533 0.572 0.039 0.484
HalF-SAM w/o Memory C+D 0.539  0.581 0.042 0.475
HalF-SAM C 0.883 0.883 <0.001 0.397
HalF-SAM D 0.852  0.852 <0.001 0.374
HalF-SAM C+D | 0.867 0.867 <0.001 0.388

* C+D: complete test dataset with both clean videos and videos with debris; C:
only clean videos; D: only videos with debris.

* Bold numbers indicate the best performance; Underscored numbers indicate the
second best performance.
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4.4 Experimental Results

&
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Fig. 2. Qualitative results showing HalF-SAM debris suppression and temporal con-
sistency. Notice the edge flickering in DexiNed edges.

Ablation Study The second section of Table 1 shows the results of ablation
study. The pre-trained SAM2 encoder enhances feature representation, resulting
in significant improvement compared to DexiNed. The SAM adaptor enabled the
SAM2 encoder to achieve domain adaptation, further boosting the accuracy. The
HalF-SAM incorporates a memory mechanism to achieve better edge detection
accuracy and stability.

Qualitative Comparison Figure 2 presents a qualitative comparison between
the proposed method and other edge detection models. Our observations indicate
that our model effectively reduces false-positive edges caused by colonic artifacts,
such as debris and specular reflections. In addition to training on debris-filtered
edges, a possible reason for this improvement is the enhanced semantic under-
standing of scenes provided by the SAM image encoder. Furthermore, we note
that our model generates temporally consistent edges across frames, compared to
other models, which could be attributed to the integration of a memory module.



HalF-SAM: SAM-based Haustral Fold Detection 9

5 Conclusion

In this paper, we introduced HalF-SAM, a novel model that incorporates the
powerful Segment Anything Model 2 image encoder and multi-layer memory
attention modules for haustral fold edge detection in colonoscopy videos. Our
approach demonstrates robust performance in challenging conditions, including
the presence of debris and dirty optics, while generating temporally consistent
edges. This advancement opens new possibilities for using haustral fold edge
tracking instead of point-wise feature tracking in colonoscopy 3D reconstruction
and navigation. To support further research in this area, we will make available
a challenging haustral fold detection dataset.

Future work will focus on adapting the model for in vivo colonoscopy data
to enhance its clinical applicability. Previous work has adapted optical flow esti-
mation models for quantitative evaluation of temporal consistency [5]. We plan
to evaluate the potential for performance improvements in downstream tasks
such as 3D reconstruction and depth estimation using the detected haustral fold
edges and the optical flow maps collected along with the video dataset.
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