
Adaptive Graph Learning with Multi-Graph
Convolutions for Brain Disorder Classification

Fuad Noman1[0000−0002−1756−8239], Raphaël C.-W. Phan1[0000−0001−7448−4595],
Hernando Ombao2[0000−0001−7020−8091], and Chee-Ming

Ting1[0000−0002−6037−3728]

1 School of Information Technology, Monash University Malaysia
{fuad.noman,raphael.phan,ting.cheeming}@monash.edu

2 Statistics Program, King Abdullah University of Science and Technology
hernando.ombao@kaust.edu.sa

Abstract. Functional Magnetic Resonance Imaging (fMRI) provides
crucial insights into brain activity but presents challenges due to its
high-dimensional, dynamic, and noisy nature. Traditional graph-based
approaches for fMRI analysis often rely on predefined correlation struc-
tures, which may not accurately reflect the true underlying functional
connectivity. To address this limitation, we propose a graph learning
framework that dynamically constructs brain graphs and leverages Spline
Convolutional Neural Networks (SplineCNN) for localized spatial fea-
ture extraction. Our model introduces a Learner Graph module, which
infers graph structures in a data-driven manner, mitigating the reliance
on predefined connectivity measures. The SplineCNN and Multi-Graph
Convolution modules capture fine-grained spatial dependencies, offering
improved adaptability to the heterogeneous nature of fMRI data. Addi-
tionally, we incorporate contrastive learning to align learned represen-
tations with domain-specific priors to improve generalization. Experi-
mental results demonstrate that our approach outperforms traditional
correlation-based methods in neurological disorder classification. The
proposed framework provides a principled, adaptive solution for learning
graph representations from fMRI, enhancing generalizability and robust-
ness in brain network analysis.
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1 Introduction

Functional Magnetic Resonance Imaging (fMRI) has emerged as a cornerstone
for studying brain function, offering a non-invasive window into the dynamics
of neural activity through Blood Oxygen Level Dependent (BOLD) signals [3].
This modality has been instrumental in uncovering aberrant functional connec-
tivity patterns associated with neurological disorders such as Autism Spectrum
Disorder (ASD) and Major Depressive Disorder (MDD) [4,5]. However, the high-
dimensional, noisy, and temporally dynamic nature of fMRI data poses signifi-
cant challenges for accurate brain network modeling and disorder diagnosis [6].
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Traditional approaches often construct Functional Connectivity (FC) graphs
using predefined measures like Pearson correlation or partial correlation, which
may fail to capture the complex, subject-specific topological structures inherent
in brain networks [7,8]. Recent advances in graph-based deep learning have shown
promise in addressing these limitations by modeling brain networks as graphs,
where nodes represent regions of interest (ROIs) and edges denote functional
connections [9, 10]. Graph Convolutional Networks (GCNs), for instance, have
been employed to leverage the non-Euclidean structure of brain connectomes,
outperforming conventional Convolutional Neural Networks (CNNs) that assume
regular grid-like data [11,12].

Zeng et al. [13] introduced the Knowledge-driven Multi-Graph Convolutional
Network (KMGCN), which integrates individual and population-level graphs to
enhance brain network analysis, demonstrating superior performance in identi-
fying biomarkers for Alzheimer’s Disease and ASD. Similarly, Noman et al. [14]
proposed a Graph Autoencoder (GAE) framework with GCNs to embed topolog-
ical features of brain networks for MDD classification, highlighting the potential
of unsupervised graph learning. Despite these advances, existing methods of-
ten rely on static or prior-driven graph structures, limiting their adaptability
to the heterogeneous and dynamic nature of fMRI data across individuals and
disorders. Also, transductive population-based GCN approaches, which often in-
tegrate multi-graph convolutions, face critical limitations during inference that
compromise their generalizability. These methods commonly rely on population-
level graph structures that incorporate information from both training and test
sets, introducing a bias that inflates performance metrics and undermines fair
evaluation [13]. Such dependence on test-time access to training data distribu-
tions is impractical for real-world clinical applications, where unseen data must
be processed independently, and increases the risk of overfitting to specific train-
ing cohorts [16].

To overcome these challenges, we propose an Adaptive Graph Learning with
Multi-Graph Convolutions (AGMGC) framework for fMRI-based brain disorder
diagnosis. Our approach departs from predefined connectivity assumptions by
introducing a Learner Graph module, which dynamically infers graph structures
from raw fMRI time series in a data-driven manner. This is complemented by a
Spline Convolutional Neural Network (SplineCNN) module [22], which extracts
localized spatial features from the learned graphs, and a Multi-Graph Convo-
lution module (MGCNet) that captures fine-grained dependencies for robust
classification. Inspired by contrastive learning paradigms [15], we incorporate a
contrastive loss to align the learned representations with domain-specific priors,
enhancing generalization across datasets. We evaluate our framework on two
prominent datasets: the Autism Brain Imaging Data Exchange (ABIDE) for
ASD classification and the REST-meta-MDD Consortium database for MDD
diagnosis, targeting the identification of disorder-specific connectivity patterns.

Our contributions are threefold: 1.) A novel graph learning framework that
adaptively constructs brain graphs from fMRI, reducing reliance on static corre-
lation measures. 2.) Integration of SplineCNN and multi-graph convolutions to
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Fig. 1. Overall framework of the proposed AGMGC approach. The model employs a
Learner Graph module to dynamically construct brain graphs from fMRI time series,
augmented by data-driven graphs using partial correlation. SplineCNN and Multi-
Graph Convolution modules process these multi-graph representations, capturing lo-
calized and global spatial features. Feature fusion and contrastive learning are applied
to enhance generalization.

capture localized and global spatial dependencies, improving diagnostic accuracy.
3.) A contrastive learning strategy to enhance the robustness and generalizability
of the learned representations.

2 Methods

As illustrated in Fig. 1, our AGMGC framework integrates adaptive graph con-
struction, multi-graph convolutions, and contrastive learning to model fMRI-
derived brain networks.

2.1 Data Preprocessing and Graph Representation

For each subject, we consider fMRI-derived graph G = (V,E), where V =
{v1, . . . , vN} denotes N ROIs (e.g., 200 using CC200 atlas), and E represents
functional connections with corresponding adjacency matrix A ∈ RN×N . Let
T ∈ RN×T be the BOLD time series matrix, where T is the number of time
points (truncated to the minimum T across subjects, e.g., 78 for ABIDE, 140 for
REST-meta-MDD). We standardize T by subtracting the mean and dividing by
the standard deviation computed across all subjects.

2.2 Learner Graph Module

Traditional methods define the adjacency matrix A ∈ RN×N using Pearson cor-
relation or partial correlation [13]. Instead, our Learner Graph module infers
A dynamically from T. We employ a convolutional encoder inspired by [14]:

Z(1) = ReLU(Conv1d(T;Wc)) (1)
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where Conv1d is a 1D convolution with kernel size 3, stride 2, and weights Wc,
reducing the temporal dimension to T ′ = ⌊(T + 2 − 3)/2⌋ + 1. The output
Z(1) ∈ RN×T ′

is then transformed:

Z(2) = ReLU(W1 · mean(Z(1), dim = 1)) (2)

AL = softmax(W2 · Z(2) · (W2 · Z(2))⊤) (3)

where W1 ∈ RT ′×64 and W2 ∈ R64×N are learnable parameters, and AL ∈
RN×N is the learned symmetric adjacency matrix normalized via softmax. To
ensure sparsity, we apply kNN thresholding:

A′
L = kNN(AL, k) (4)

where k = ⌊0.15N⌋ retains the top 15% strongest connections.

2.3 Multi-Graph Construction

We augment A′
L with a data-driven graph AK , computed as the partial cor-

relation of T. Both A′
L and AK are thresholded to ensure consistent sparsity,

forming a multi-graph tuple {A′
L,AK}.

2.4 SplineCNN and Multi-Graph Convolution

The SplineCNN module extracts localized features from AK using a spline-
based convolution:

HS = SplineConv(X,AK ;WS) (5)

where X = AK + diag(1N ) (pseudo-features), WS are spline weights, and:

HS =

K∑
k=1

(BkW
(k)
S X) (6)

with Bk as the spline basis computed from AK , and K = 4 basis functions. The
output HS ∈ RN×D (e.g., D = 32) captures spatial dependencies.

The Multi-Graph Convolution (MGCNet) processes multi-graph features.
First, multi-graph feature aggregation is performed as:

HG
(0) = (AKX)⊙ (A′

LX). (7)

Then, graph convolutions are applied sequentially:

HG
(1) = BN(LeakyReLU(HG

(0)Θ1)Θ2), (8)

HG
(2) = (AKHG

(1))⊙ (A′
LHG

(1)). (9)

Here, Θi are learnable weight matrices, ⊙ denotes element-wise multiplication,
and BN represents batch normalization.
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The embeddings from SplineCNN HS ∈ RN×D and the Multi-Graph Con-
volution module HG ∈ RN×D are fused using a dynamic gated Mixture of
Experts (MoE) approach to adaptively combine their contributions. The MoE
module concatenates the two embeddings along the feature dimension to form
Hcat = [HS ,HG] ∈ RN×2D. A gating network then computes weights for each
expert:

W = softmax(FCN2(GELU(FCN1(Hcat)))) (10)

where FCN1 : R2D → R4 and FCN2 : R4 → R2 are fully connected layers, and
W ∈ RN×2 represents the softmax-normalized weights for HS and HG at each
node. The final fused embedding is computed as:

H = W:,0:1 ·HS +W:,1:2 ·HG (11)

where W:,0:1 and W:,1:2 are the weight slices for HS and HG, respectively, and
(·) denotes element-wise multiplication with broadcasting. The fused embedding
H ∈ RN×D is then flattened and passed through a fully connected network for
classification:

y = softmax(FCN(flatten(H))) (12)

2.5 Training Loss

The model is trained using a composite loss function that combines classification,
clustering, and contrastive objectives to enhance both predictive accuracy and
graph representation quality. We employ a mixup-augmented cross-entropy loss
to improve generalization. Given predictions y, true labels ya and yb for two
samples, and a mixing coefficient λ ∈ [0, 1] sampled from a Beta distribution,
the mixup classification loss is defined as:

Lmixup = wmixup-weight · [λLCE(y,ya) + (1− λ)LCE(y,yb)] (13)

where LCE is the cross-entropy loss, and mixup-weight = 2 amplifies the contri-
bution of the mixup term. To ensure consistency in the learned graph topology,
a mixup cluster loss Lcluster is applied to the learner topology A′

L, aligning it
with the interpolated targets ya and yb under the same λ:

Lcluster = clusterloss(A′
L,ya,yb, λ) (14)

Additionally, a contrastive loss aligns the learned adjacency matrix A′
L with

the data-driven adjacency AK (e.g., partial correlation pcorr):

Lcont =
1

N

N∑
i=1

∥A′
L,i −AK,i∥22 (15)

where A′
L,i and AK,i are row vectors of the respective adjacency matrices. The

total loss combines these terms:
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L = Lmixup + Lmixup-cluster + αLcont (16)

with α (set as λcontrastive in training) controlling the weight of the contrastive
term, empirically tuned to balance the objectives.

3 Experiments and results

3.1 Datasets

We evaluate the proposed framework on two widely-used fMRI datasets: the
ABIDE and the REST-meta-MDD Consortium database. ABIDE [1] comprises
1,035 subjects, including 530 individuals with ASD and 505 healthy controls
(NC), with 878 males and 157 females, a mean age of 16.95 years, and a standard
deviation of 8 years. The REST-meta-MDD database [2] includes 1,601 subjects,
with 830 diagnosed with MDD and 771 NC, consisting of 622 males and 979
females, a mean age of 34.47 years, and a standard deviation of 12.36 years.
These datasets provide diverse demographic and clinical profiles, enabling robust
assessment of our model across ASD and MDD classification tasks.

3.2 Experimental Setup

Training and Evaluation We train AGMGC using AdamW optimizer (lr =
0.000761, wd = 5.3e-06) over 100 epochs with 5-fold stratified cross-validation on
ABIDE and REST-meta-MDD. Performance metrics include accuracy (ACC),
sensitivity (SEN), specificity (SPE), precision (PRE), F1-score (F1), and area
under the receiver operating characteristic curve (AUC).

Comparison with Baseline Methods: To assess the performance of our AG-
MGC framework, we benchmark it against a range of baseline methods, includ-
ing conventional machine learning techniques, Support Vector Machines (SVM)
and Multi-Layer Perceptrons (MLP), and several prominent graph neural net-
work models: PopulationGCN [18], BrainGNN [19], GATE [20], PLSNet [21],
and KMGCN [13]. For fair evaluation, we utilized publicly available implemen-
tations of these competing methods, ensuring all models were trained and tested
under identical computational conditions.

Ablation Study: To elucidate the individual contributions of our AGMGC
framework’s components, we conducted an ablation study by systematically eval-
uating the performance of key modules in isolation. Specifically, we assessed the
efficacy of SplineCNN module, which captures localized spatial features from the
learned graph topology, by training and testing the model with only this com-
ponent active. Subsequently, we evaluated the MGCNet module, responsible for
integrating multi-graph representations from both adaptive and data-driven ad-
jacency matrices, in a separate configuration.
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Table 1. Classification performance on the ABIDE dataset for NC vs. ASD.

ACC PRE SEN SPE F1 AUC
SVM 67.34±2.26 67.30±3.03 70.78±02.70 63.80±4.47 68.94±1.87 67.29±2.29

MLP 65.12±6.13 66.50±5.55 64.43±08.20 65.93±6.66 65.33±6.36 65.18±6.10

PopulationGCN [18] 80.73±3.04 79.55±3.66 85.59±05.52 75.34±4.98 82.35±3.09 80.47±3.00

BrainGNN [19] 70.74±4.45 71.91±4.95 73.66±05.33 67.54±7.76 72.65±3.96 70.60±4.53

PLSNet [21] 74.69±3.73 74.96±1.57 77.95±10.52 70.87±5.41 76.12±5.51 83.88±3.46

KMGCN [13] 77.68±2.28 80.99±7.13 75.99±08.05 79.44±11.37 77.94±3.12 85.88±4.82

GATE [20] 75.10±6.91 74.71±4.99 79.49±9.27 70.21±4.87 76.97±6.92 74.85±6.78

SplineCNN (Ours) 79.53±4.00 83.11±6.09 77.38±08.32 81.85±08.74 79.78±4.76 79.61±4.02

MGCNet (Ours) 82.36±2.37 80.46±3.37 87.65±2.15 76.58±6.15 83.84±1.55 82.11±2.62

AGMGC (Ours) 84.65±3.36 86.14±6.99 85.43±06.15 84.08±9.16 85.44±2.86 84.75±3.28

Table 2. Classification performance on the REST-meta-MDD dataset for NC vs. MDD.

ACC PRE SEN SPE F1 AUC
SVM 64.71±1.59 64.70±1.47 70.36±3.02 58.62±03.20 67.38±1.68 64.49±1.60

MLP 62.71±0.88 64.69±0.81 61.93±4.39 63.56±03.38 63.20±2.05 62.74±0.79

PopulationGCN [18] 72.30±1.55 72.66±1.37 89.34±1.90 43.93±04.12 80.12±1.07 66.63±1.92

BrainGNN [19] 63.63±1.16 66.60±2.63 84.84±8.00 28.23±13.97 74.35±2.05 56.53±3.19

PLSNet [21] 71.25±1.16 75.37±3.86 82.34±7.75 51.87±13.48 78.39±1.79 75.94±1.15

KMGCN [13] 68.75±5.28 74.65±3.65 77.12±7.51 54.05±07.75 75.74±4.67 72.19±5.98

GATE [20] 73.79±1.43 78.3±1.59 80.37±0.45 62.85±3.32 79.31±0.96 71.61±1.8

SplineCNN (Ours) 74.55±2.02 78.96±3.46 82.18±2.82 61.17±9.22 80.45±1.11 71.67±3.47

MGCNet (Ours) 79.59±4.38 79.87±4.96 82.95±3.36 75.71±6.85 81.34±3.81 79.33±4.51

AGMGC (Ours) 82.36±2.84 82.11±3.2 80.94±6.11 83.64±03.90 81.40±3.44 82.29±2.93

3.3 Results on ABIDE Dataset

Table 1 summarizes the classification performance on the ABIDE dataset. Among
baseline methods, traditional machine learning approaches (SVM and MLP)
achieved modest results, with SVM recording an accuracy of 67.34% and MLP
at 65.12%, reflecting their limited capacity to model complex graph structures
in fMRI data. State-of-the-art graph neural network models exhibited stronger
performance, with PopulationGCN [18] achieving an accuracy of 80.73% and
KMGCN [13] reaching an AUC of 85.88, highlighting the advantage of lever-
aging population-level graph information. However, these methods trailed our
full AGMGC model, which attained the highest accuracy (84.65%), precision
(86.14%), specificity (84.08%), and F1-score (85.44%), alongside a competitive
AUC (84.75).

The ablation study reveals the complementary strengths of our framework’s
components. The SplineCNN module achieved an accuracy of 79.53% and a high
specificity of 81.85%, underscoring its effectiveness in extracting localized spatial
features. The MGCNet module outperformed SplineCNN in accuracy (82.36%)
and sensitivity (87.65%), demonstrating its capability to integrate multi-graph
representations for robust classification. The full AGMGC model, combining
both modules with contrastive learning, consistently outperformed its individual
components across most metrics, indicating a synergistic enhancement in cap-
turing both local and global connectivity patterns. Notably, AGMGC’s lower
standard deviations in key metrics (e.g., F1-score: ±2.86) compared to base-
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lines like GATE (±6.92) and PLSNet (±5.51) suggest improved stability, likely
attributable to the adaptive graph learning and dynamic fusion mechanisms.

3.4 Results on REST-meta-MDD Dataset

Table 2 presents the classification performance on the REST-meta-MDD dataset
for NC vs. MDD. Conventional methods (SVM: 64.71%, MLP: 62.71%) again
underperformed, struggling with the high-dimensional fMRI data. Among GNN
baselines, PopulationGCN [18] excelled in sensitivity (89.34%) but faltered in
specificity (43.93%), indicating a bias toward MDD detection at the expense of
NC classification. GATE [20] achieved a balanced accuracy of 73.79% and pre-
cision of 78.30%, while KMGCN [13] showed moderate performance (accuracy:
68.75%) with higher variability across folds.

Our AGMGC framework outperformed all baselines, achieving the highest
accuracy (82.36%), specificity (83.64%), F1-score (81.40%), and AUC (82.29%),
with competitive precision (82.11%). The ablation results highlight distinct mod-
ule contributions: SplineCNN delivered a strong F1-score (80.45%) and sensitiv-
ity (82.18%), reflecting its focus on local feature extraction, whereas MGCNet
improved specificity (75.71%) and overall accuracy (79.59%), leveraging multi-
graph integration. The full AGMGC model balanced these strengths, achiev-
ing superior specificity and stability (e.g., AUC variance: ±2.93 vs. KMGCN’s
±5.98), likely due to the adaptive graph construction and Mixture of Experts
fusion mitigating biases seen in population-based methods like PopulationGCN.

4 Conclusion

We developed the Adaptive Graph Learning with Multi-Graph Convolutions
(AGMGC) framework for fMRI-based brain disorder diagnosis, addressing the
limitations of static connectivity measures and biased inference processes preva-
lent in population-based graph neural network approaches. By integrating a
data-driven Learner Graph module, SplineCNN for localized feature extraction,
and a Multi-Graph Convolution Network with dynamic Mixture of Experts
fusion, AGMGC achieved superior classification performance on the ABIDE
and REST-meta-MDD datasets. On ABIDE, AGMGC attained an accuracy of
84.65% and an F1-score of 85.44%, outperforming state-of-the-art baselines like
PopulationGCN and KMGCN. For REST-meta-MDD, it recorded an accuracy
of 82.36% and a specificity of 83.64%, demonstrating robust generalization across
disorders. Ablation studies confirmed the complementary roles of SplineCNN and
MGCNet, with their synergy enhancing both predictive accuracy and stability.

Our work advances fMRI analysis by offering a scalable and generalizable so-
lution that mitigates reliance on predefined graph structures and test-time train-
ing data dependencies. Future research could extend AGMGC to dynamic fMRI
data to capture temporal connectivity fluctuations and explore multimodal inte-
gration with structural imaging for a comprehensive brain network understand-
ing. Additionally, future efforts will focus on developing interpretability analyses,
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such as validating ROI importance scores and visualizing learned graphs, to align
with established neuroscience findings. These enhancements could further refine
its diagnostic potential, positioning AGMGC as a valuable tool for precision
neuroscience and clinical applications.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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