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Abstract. Detecting human vigilance states (e.g., natural shifts be-
tween alertness and drowsiness) from functional magnetic resonance imag-
ing (fMRI) data can provide novel insight into the whole-brain pat-
terns underlying these critical states. Moreover, as a person’s vigilance
levels are closely tied to their behavior and brain activity, vigilance
state can strongly influence the results of fMRI studies. Therefore, the
ability to annotate fMRI scans with vigilance information can also en-
able clearer and more robust results in fMRI research. However, well-
established vigilance indicators are derived from other modalities such
as behavioral responses, electroencephalography (EEG), and pupillom-
etry, which are not typically available in fMRI data collection. While
previous works indicate the promise of distinguishing vigilance states
from fMRI alone, EEG data can provide reliable vigilance indicators
that complement and augment fMRI domain information. Here, we pro-
pose CBrain: Cross-modal learning for Brain vigilance detection in
resting-state fMRI. Our model transfers EEG vigilance information into
an fMRI latent space in training, and predicts human vigilance states
using only fMRI data in testing, addressing the need for external vig-
ilance indicators. Experimental results demonstrate CBrain’s ability to
predict vigilance states across different individuals at a granularity of
10-fMRI-frames with an 81.07% mF1 score on a test set of unseen sub-
jects. Additionally, our generalization experiments highlight the model’s
potential to estimate vigilance in an unseen task and in resting-state
fMRI scans collected with a different scanner at a different site. Source
code: https://github.com/neurdylab/CBrain.
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1 Introduction

Functional magnetic resonance imaging (fMRI) data provides whole-brain blood-
oxygen-level-dependent (BOLD) signals at millimeter-scale resolution. During
fMRI scans, subjects often experience natural shifts between alertness and drowsi-
ness, also known as fluctuations in vigilance. Deriving brain-wide patterns asso-
ciated with vigilance provides a window into brain activity associated with this
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critical brain state[3, 13]. Further, vigilance state fluctuations strongly influence
subjects’ behavior and brain activity[13]. As a result, modeling the effects of
vigilance on fMRI data, and providing accurate vigilance state annotations, can
facilitate fMRI research and enable a more robust interpretation results across
a broad range of studies.

Well-established vigilance indicators can be derived from measures such as
EEG and pupillometry. However, collecting these additional data requires spe-
cialized hardware, additional setup time, and expertise in acquiring and denois-
ing these signals. Resting-state fMRI scans also lack behavioral measures, which
can also convey vigilance information. The lack of ground-truth vigilance indi-
cators in most fMRI datasets motivates the development of methods to infer
vigilance fluctuations directly from fMRI data. Previous work has demonstrated
the feasibility of detecting vigilance from fMRI [8, 31, 23]. However, these meth-
ods are either limited in temporal resolution, predicting vigilance states from
functional connectivity windows of ≥ 40s[23, 26] or they have high temporal res-
olution but are limited in their ability to quantify corresponding states and state
transitions across scans (as opposed to relative variations within scans)[8], or are
unsupervised methods that need additional information to label the discovered
states[31]. fMRI foundation models[1, 2, 6, 29] are demonstrating promise in ap-
plications such as fMRI signal reconstruction and disease modeling. However, to
our knowledge, such models have not yet been leveraged for predicting vigilance
states from fMRI.

EEG is highly complementary to fMRI: fMRI has high spatial resolution but
lower temporal resolution, and measures a blood-oxygen response; while EEG
has lower spatial resolution but high temporal resolution, and measures neuro-
electrical activity. Moreover, EEG data is rich with vigilance-related information
[19]. Combining fMRI and EEG may thus provide improved spatiotemporal fea-
tures, and allows for incorporating EEG vigilance information into latent repre-
sentations of fMRI data. We hypothesize that leveraging EEG to train an fMRI
vigilance-detection model may increase a model’s ability to discern vigilance
states. Currently, fMRI vigilance labeling strategies are not yet established as
ground truth. By training fMRI models to predict EEG-derived labels, we ad-
dress an open challenge: enabling vigilance detection from fMRI alone.

We propose CBrain: Cross-modal learning for Brain vigilance detection, a
cross-modal architecture that leverages EEG to enhance fMRI-based vigilance
detection. We train our model on simultaneous EEG-fMRI data, transferring
vigilance-related cross-modal EEG knowledge into the fMRI latent space. During
testing, CBrain uses only 10-frame fMRI data patches as input and achieves an
81.07% mF1 score in predicting vigilance states for unseen test-set subjects,
addressing the challenge of distinguishing brain states in fMRI without relying on
other data modalities. Our experiments on another EEG-fMRI dataset, acquired
on a different scanner, demonstrate our model’s ability to generalize to both
resting-state and task scans. These results show that CBrain has the potential
to enrich existing fMRI scans, including those in large public datasets that lack
vigilance measures[24, 17], with new information about vigilance state.
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2 Method

Our model is trained on 10-frame fMRI data patches and corresponding EEG
data patches. We perform fMRI intra-modal learning, fMRI-EEG cross-modal
learning, and prediction head training in one stage. In testing, our model predicts
vigilance states based only on the fMRI data input, as shown in Fig.1.
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Fig. 1. CBrain’s pipeline. We train our model on paired 10-frame fMRI data and EEG
data segments. In testing, our model takes only fMRI data as input.

Obtaining Patch-wise Vigilance Ground-truth: In a simultaneous
EEG-fMRI dataset, for each fMRI scan X with T frames, we calculate frame-wise
vigilance score V1..T by applying Vigilance Algorithm Leipzig[19] on its paired
EEG data Y , and convert the integer values to range (-1, 0, 1) following [21].
We sum frame-wise labels for every 10-frame fMRI patch and assign the ground
truth as alert if the sum exceeds -5, and drowsy otherwise.

Cross-modal Contrastive Learning: For each 10-frame fMRI data seg-
ment x, consisting of data from 64 regional and 2 global fMRI time courses
(described in Section 3.1), we first extract its spatial features fs

x and temporal
features f t

x by performing attention on the spatial and temporal axes using spa-
tial and temporal transformer-based[25] encoders respectively. Then we fuse fs

x

and f t
x with a given feature fusion ratio to obtain fMRI-domain spatial-temporal

features fx by:
fx = ratio ∗ fs

x + (1− ratio) ∗ f t
x (1)

For the fMRI segment’s corresponding 26-channel EEG data patch y, we apply a
1D CNN downsampling layer, then harvest EEG spatial features fs

y and temporal
features f t

y from EEG spatial and temporal transformer encoders in the same
manner as in fMRI domain. We fuse these EEG spatial and temporal features
using the same feature ratio as fMRI features. We map fMRI features fx and
EEG features fy to a common latent space using our latent encoding modules,
each consisting of two blocks of a linear layer followed by one ReLU activation,
obtaining f latent

x and f latent
y . Then, we apply contrastive learning on the fMRI

features and cross-modal latent space, allowing the model to capture intrinsic
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vigilance-state differences and to bridge EEG brain-state-related features into
the fMRI domain. In the fMRI domain, we perform contrastive learning on
fMRI fused features fx to increase the fMRI features’ discriminability. For cross-
modal learning, we apply contrastive loss on the fMRI latent features f latent

x and
corresponding EEG latent features f latent

y , bringing EEG brain-state information
into a shared latent space with fMRI features. We use contrastive learning loss[4,
15], defined for a batch of features f with m samples with temperature τ as:

Lce(f1..m) = − 1

m

m∑
i=1

log

∑mpos
i

k=1 ef
⊤
i fk/τ∑m

j=1 e
f⊤
i
fj/τ

, (2)

where mpos
i denotes the positive samples for feature fi. For feature fi, positive

samples are features with the same ground truth label as fi; negative samples
are features with different labels. In practice, we only integrate the contrastive
learning loss for the first sample in the batch. The fMRI-modal contrastive loss
Lfmri
ce and cross-modal contrastive loss Leeg−fmri

ce are as follows:

Lfmri
ce = Lce(fx1..m

) (3)

Leeg−fmri
ce = Lce(f

latent
x1..m

) + Lce(f
latent
y1..m

) + Lce(f
latent
x1..m

, f latent
y1..m

) (4)

Vigilance State Prediction: Given a 10-frame segment of fMRI data
from an unseen subject, we first extract its spatial-temporal features without
mapping it to the latent space, and feed it to a classification MLP head with
three hidden layers, each comprising a linear layer, batch normalization, and
LeakyReLU activation. The output layer is a linear layer without normalization.
The MLP head is trained using cross-entropy loss Lcls. The overall training loss
can be formulated as:

L = Lcls + Lfmri
ce + Leeg−fmri

ce (5)

Model Training: We train our model in an end-to-end manner, with the
feature fusion ratio as 0.5, contrastive learning temperature τ as 0.1, the weights
of Lcls, Lfmri

ce , Leeg−fmri
ce as 0.5, 0.1, and 0.1. We train our model for 50 epochs

using AdamW optimizer, a learning rate of 7e-4, a weight decay of 0.1, and a
batch size of 32 on a single NVIDIA RTX 6000 GPU. Training on the full dataset
takes less than one hour. We adopt a linear warm up from 1e-6 for 20 epochs.
We develop our code based on the frameworks in[18, 15] to perform cross-modal
contrastive learning for vigilance detection. CBrain’s theoretical complexity is
as follows: encoder[25]: O(n2 ∗ d), MLP: O(m ∗ d1..n), contrastive learning[4]:
O(m2) (n: sequence length, d: feature dim, m: batch size).

3 Experiments

3.1 Training and External Validation Datasets

For model training, we used a simultaneous EEG-fMRI dataset comprising 29
resting-state scans from 22 healthy subjects. Subjects provided written informed
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consent, and protocols were approved by the Institutional Review Board. Func-
tional MRI data was acquired using a multi-echo EPI sequence (3T scanner,
TR=2100ms). 32-channel EEG data was collected at 5KHz, synchronized to the
scanner’s 10MHz clock. Briefly, for fMRI data preprocessing, slice-timing cor-
rection, motion coregistration, multi-echo ICA denoising, alignment to MNI152
space, and 3mm spatial smoothing were performed. Using the Dictionary of
Functional Modes atlas[5], 64 regions of interest (ROIs) were extracted. Addi-
tionally, 1st through 4th-order polynomial trends and 6 motion parameters were
regressed out of the data. The global signal with and without motion param-
eters were calculated and added to the input as two additional channels. We
lagged the fMRI data by 2TRs (4.2 sec) with respect to the EEG data to ac-
count for hemodynamic response delay. EEG data was corrected for MRI and
ballistocardiogram artifacts and downsampled to 250 Hz. We use 26 channels
in training(EMG/ECG channels excluded). We obtain fMRI (and paired EEG)
data segments with a sliding time window of 10 fMRI frames and a step size of 5
fMRI frames. Please refer to [12] for the dataset and preprocessing details. The
training set includes 80% of the subjects (17 subjects, 23 scans), and the test set
comprises 20% (5 subjects, 6 scans), with no subject overlap between training
and testing splits. Noisy EEG segments were identified according to [7] and were
excluded from training and testing. Another EEG-fMRI dataset, acquired at a
different site and with different fMRI paradigms, was used for external validation
(with no data used in training)[8]. This dataset comprises scans from 14 healthy
subjects (3T, TR=2100ms), who collectively underwent 16 eye-closed-rest scans
and 12 scans collected during the delivery of intermittent auditory tones (also
with eyes closed). We preprocessed this dataset the same way as the dataset
described above.

3.2 Main Results

The main results, and comparisons with baselines trained with fMRI data only,
are shown in Table 1. Our baselines include: fMRI classification models with
strong performance in [20], timeseries models tailored for brain imaging tasks
in [28], an fMRI foundation model[2] and the hierarchical SVM with high accu-
racy in a sleep staging task[23]. CBrain achieves a macro mean-F1 (mF1) score
of 81.07% in the testing set, surpassing all baselines. The comparison between
full-CBrain with fMRI-only CBrain and fMRI-only baselines shows that incor-
porating EEG data boosts CBrain’s performance (3.22%), supporting our key
contribution that EEG knowledge enhances fMRI-based brain state detection.
This demonstrates the power of integrating complementary modalities and the
potential of cross-modal supervision as an emerging paradigm in this field.

CBrain also yields consistently high classification mF1 in the eye-closed-rest
(ecr) external validation data. CBrain trained with fMRI data alone attains a
competitive performance of 77.85% mF1 in the testing set and 78.44% mF1 in
the ecr external validation set, only inferior to the full CBrain model and the at-
tention MLP[20], demonstrating the effectiveness of our intra-model contrastive
learning in differentiating vigilance states. We acknowledge that meanMLP[20],
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Table 1. CBrain’s performance on testing set and eye-closed-rest external validation
scans, compared to baselines, with (subject-wise mean ± std) for best performing mod-
els. F1d: F1drowsy, F1a: F1alert. Bold with underline: best performance. Underline:
second-best performance. Random guess: output random predictions on brain states.

Methods Testing Set External Validation (ecr)
F1d F1a mF1 F1d F1a mF1

random guess 55.71 42.20 48.95(52.2± 9.7) 50.32 46.31 48.31(57.0± 9.6)
BrainLM[2] 64.82 37.25 51.04 59.72 37.13 48.43
BolT[1] 73.63 51.52 62.58 65.10 61.39 63.25
Medformer[28] 78.40 50.88 64.64 72.95 56.41 64.68
Nonformer[14] 76.86 55.40 66.13 76.40 69.94 73.17
BrainNetCNN[10] 78.98 58.77 68.87 72.69 66.70 69.69
SVM[23] 82.40 58.18 70.29 79.61 70.18 74.89
meanLSTM[20] 81.05 65.51 73.28(68.5± 16.1) 78.52 77.13 77.82(77.2± 15.0)
attnMLP[20] 85.39 70.53 77.96(70.4± 17.2) 79.10 75.85 77.48(78.2± 14.3)
meanMLP[20] 84.59 69.57 77.08(70.2± 17.0) 83.41 81.20 82.31(81.0± 13.3)
CBrain (fMRI-only) 84.50 71.21 77.85(71.2± 15.0) 79.54 77.35 78.44(77.3± 17.2)
CBrain 86.20 75.95 81.07(75.5± 12.2) 79.63 78.01 78.82(78.6± 15.7)

a very recent model, outperforms CBrain in the external validation set; the
reason for this difference merits further investigation. We speculate that the
slight drop in CBrain’s performance on the external validation data might be
caused by differences in dataset statistics, and future work might examine po-
tential improvements through 1) data normalization strategies, and 2) encoding
demographic and hardware information to handle inter-subject and inter-site
variability.

3.3 Ablation Studies and Qualitative Analysis

Comparison with EEG Foundation Models: In Table 2, we compare our
EEG encoder with state-of-the-art EEG foundation models that benefit from
pre-training techniques to extract high-quality EEG features[27, 30, 11, 9] com-
pared in [27]. We finetune the released checkpoints on our training set to extract
EEG features and use 1D CNN for downsampling before applying our latent
encoder. Our original model has the best mF1 score, demonstrating that by
fusing spatial-temporal features, we can extract high-quality EEG features that
better assist fMRI models in improving the fMRI latent space’s discriminabil-
ity. Leveraging pre-trained EEG features leads to high performance, as utilizing
BIOT[30], BENDR[11], and LaBraM[9] reached an mF1 that exceeded all fMRI-
only models in the testing set. This reveals that EEG knowledge can enhance
the fMRI model’s understanding of brain states.

Training Loss: CBrain performs best with all loss components as shown in
Table 3. These results further demonstrate that complementary EEG knowledge
can improve the fMRI model’s ability to differentiate brain patterns.

Generalization: CBrain has a strong performance on the unseen external
validation dataset collected at a different site and scanner, suggesting its gener-
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alizability to unseen data (Table 4). A comparison between CBrain trained on
fMRI data alone versus EEG-fMRI data shows that integrating EEG improves
its robustness on external datasets beyond resting-state scans.

Qualitative Analysis: Fig.2 shows the predictions of the full CBrain model,
together with ground-truth vigilance states and the corresponding EEG spectro-
grams. In Fig.3, we visualize the fMRI feature space for the testing set and the
external validation eye-closed-rest scans. UMAP[16] scatter plots (first column)
show that our fMRI encoders can successfully extract fMRI features with strong
brain-state discriminability. We also visualize the average alert and drowsy fMRI
features in the test and external validation (ecr) sets and project them onto the
brain surface map. In line with prior work[31], the drowsy patterns show greater
sensorimotor and visual activity. These results demonstrate that CBrain can
generate consistent fMRI embeddings for different brain states.

Table 2. Comparison of EEG encoders on the testing set (with subject-wise mean ±
std). Bold: best performance.

Method F1drowsy F1alert mF1 mAC

CBrain w/ EEGPT[27] 83.89 70.18 77.03(72.6± 13.6) 79.08
CBrain w/ BIOT[30] 86.08 72.60 79.34(71.9± 15.9) 81.54
CBrain w/ BENDR[11] 85.99 75.42 80.71(75.6± 14.4) 82.15
CBrain w/ LaBraM[9] 85.61 75.98 80.79(75.3± 14.0) 82.00
CBrain 86.20 75.95 81.07(75.5± 12.2) 82.46

Table 3. Ablations on training loss with training weights. Bold: best performance.

Method Lcls Lfmri
ce Leeg−fmri

ce F1drowsy F1alert mF1 mAC

0.5 - - 81.86 67.10 74.48 76.62
CBrain 0.5 0.1 - 83.21 69.96 76.59 78.46

0.5 0.1 0.1 86.20 75.95 81.07 82.46

Table 4. Generalization experiments on external validation dataset in eye-closed-rest
and eye-closed-task scans with (subject-wise mean ± std). F1d: F1drowsy, F1a: F1alert.
Bold: best performance.

Methods Eye-closed-rest Eye-closed-task
F1d F1a mF1 F1d F1a mF1

CBrain (fMRI only) 79.54 77.35 78.44(77.3± 17.2) 76.09 48.77 62.43(64.2± 21.5)
CBrain 79.63 78.01 78.82(78.6± 15.7) 74.84 52.27 63.56(63.2± 22.3)
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Fig. 2. Visualization of CBrain’s predictions on the testing set and external validation
(eye-closed-rest) scans, along with the best-performing baselines (testing set: attn-
MLP[20], ecr scans: meanMLP[20]). Top plots of each panel: EEG spectrograms[22].
Bottom plots of each panel: model predictions (blue), baseline predictions (purple), the
10-frame ground truth (orange), the original frame-wise integer Vigilance Algorithm
Leipzig (VIGALL) labels (green), noisy EEG segments (gray bars). Higher labels indi-
cate higher alertness levels[19]. The overlap between predicted and ground truth labels
reflects strong performance.

a) Alert UMAP featuresTest Set

c) Alert UMAP features

b) Drowsy UMAP features

d) Drowsy UMAP featuresExternal Validation (ecr)

Fig. 3. Qualitative analysis of CBrain’s extracted fMRI features. Each row illustrates
the UMAP[16] embedding of fMRI features within the dataset, and the mapping of
average alert and drowsy fMRI features on the brain surface in both hemispheres.



Title Suppressed Due to Excessive Length 9

4 Conclusion

We propose CBrain: Cross-modal learning for Brain vigilance detection from
resting-state fMRI, which transfers cross-modal vigilance knowledge from EEG
to the fMRI domain. Our model accurately predicts vigilance state from fMRI
data in a 10-fMRI-frame granularity. This approach can provide vigilance-state
annotations to fMRI scans, including public databases, in the common scenario
where dedicated vigilance measures (such as EEG and eye behavior) are not
simultaneously recorded. Our model’s robustness in generalization tasks supports
the idea that cross-modal EEG information can enhance the discriminability of
brain state patterns within single-modal fMRI data.
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