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Abstract. Precise parcellation of functional networks (FNs) of early de-
veloping human brain is the fundamental basis for identifying biomarker
of developmental disorders and understanding functional development.
Resting-state fMRI (rs-fMRI) enables in vivo exploration of functional
changes, but adult FN parcellations cannot be directly applied to the
neonates due to incomplete network maturation. No standardized neona-
tal functional atlas is currently available. To solve this fundamental is-
sue, we propose TReND, a novel and fully automated self-supervised
transformer-autoencoder framework that integrates regularized nonnega-
tive matrix factorization (RNMF) to unveil the FNs in neonates. TReND
effectively disentangles spatiotemporal features in voxel-wise rs-fMRI
data. The framework integrates confidence-adaptive masks into trans-
former self-attention layers to mitigate noise influence. A self supervised
decoder acts as a regulator to refine the encoder’s latent embeddings,
which serve as reliable temporal features. For spatial coherence, we incor-
porate brain surface-based geodesic distances as spatial encodings along
with functional connectivity from temporal features. The TReND clus-
tering approach processes these features under sparsity and smoothness
constraints, producing robust and biologically plausible parcellations. We
extensively validated our TReND framework on three different rs-fMRI
datasets: simulated, dHCP and HCP-YA against comparable traditional
feature extraction and clustering techniques. Our results demonstrated
the superiority of the TReND framework in the delineation of neonate
FNs with significantly better spatial contiguity and functional homogene-
ity. Collectively, we established TReND, a novel and robust framework,
for neonatal FN delineation. TReND-derived neonatal FNs could serve
as a neonatal functional atlas for perinatal populations in health and
disease.
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1 Introduction

Neuroscientists have long attempted to subdivide the human brain into a mesh
of anatomically and functionally distinct, contiguous regions [1–7]. This chal-
lenge become particularly complex in the neonatal brain, where functional or-
ganization differs markedly from that of adults. During the third trimester, the
neonatal brain undergoes a critical phase of enhanced functional segregation,
largely driven by the rapid development of functional connectivity (FC) and the
formation of hubs in primary regions [8–10]. This period of growth and organi-
zation leads to the emergence of functionally segregated networks, revealing the
underlying principles that shape both healthy and diseased brain states [11–13].
However, achieving accurate and reliable parcellation of specific functional net-
works (FNs) in newborns presents unique challenges. The combined effects of
rapid functional segregation, low imaging quality, and the absence of established
functional atlases as prior reference knowledge complicate this process [14, 15].
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Fig. 1. Schematic representation of end-to-end population-level functional parcellation
framework. A. Processed Blood Oxygenation Level Dependent (BOLD) fMRI data.
B. Feature extraction using transformer-based autoencoder to convert BOLD signals
into low-dimensional embeddings. C. Correlation matrix from the transformer-based
feature embeddings. D. Clustering using RNMF + KMeans are performed to generate
parcellation of different regions. E. Population-level parcellation shows different regions
based on averaged correlation matrix across subjects.

Recent advances in artificial intelligence have enabled temporal features ex-
traction from fMRI blood oxygenation level-dependent (BOLD) signals using
self-supervised and contrastive learning. While supervised deep learning (DL)
architectures have learned FC patterns to predict clinical and demographic vari-
ables (e.g., [16, 17]), self-supervised architectures such as variational autoen-
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coders, which embed FC profiles into low-dimensional latent spaces [18], remain
largely unexplored in brain parcellation. Here, we introduce, to our knowledge,
the first transformer-based autoencoder that extracts temporal BOLD features
for functional parcellation, extending DL-based embeddings beyond prediction
to unsupervised parcellation frameworks.

In this study, we developed the Transformer derived Regularized NMF for
neonatal FN Delineation (TReND) framework. This approach involves self su-
pervised DL-based BOLD time course feature extraction with a novel attention
mechanism tailored for brain parcellation, improved regularized NMF frame-
work and novel fusion of geodesic spatial constraints with average FC for the
delineation of FNs.

2 Methods

2.1 Data description

The study included three datasets. The simulated fMRI dataset was generated
using the SimTB toolbox [19], comprising 200 simulated 2D images, each with
dimensions of 100x100 voxels and 1600 timepoints, including 15 FNs to replicate
real brain connectivity. Rician noise was added to the simulated images with
contrast-to-noise ratios ranging from 0.1 to 0.3. The developing human connec-
tome project (dHCP) included 300 term neonates (mean scan age: 41.16 weeks)
[20]. All data were preprocessed and registered to the 40 week neonatal surface
(∼32K vertices per hemisphere, 2300 timepoints) [21]. HCP Young Adult (HCP-
YA) comprised of 200 randomly selected subjects and all were preprocessed and
registered to fsLR surface with 1200 timepoints [22, 23].

2.2 Overview of TReND framework

TReND is an automated self-supervised transformer-based autoencoder frame-
work that incorporates confidence-adaptive masks to extract salient tempo-
ral features and employs geodesic-guided RNMF-KMeans clustering for robust
neonatal FN delineation. (Fig 1).

Transformer based autoencoder with confidence-adaptive mask for
temporal feature extraction. The architecture is designed to capture long-
range temporal dependencies while mitigating the over-influence of noise. The
autoencoder consists of two main components: an encoder fθ(·) that maps the
input fMRI signal (Fig 1A) to a latent representation and a decoder acting as a
self-regulator gϕ(·) that reconstructs the original signal from the latent represen-
tation. The encoder is built by stacking multiple transformer layers that capture
long-range temporal dependencies via self-attention (Fig 1B and 2A-left panel)
[24]. The attention operation is being modified to include a confidence-adaptive
mask M:

Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

+M

)
V (1)
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Here, Q, K, and V represent the query, key, and value matrices obtained from
linear projections of the input dk (e.g. 512) is the dimensionality of the key vec-
tors, and the confidence mask M modulates the contribution of each token based
on its reliability. A central innovation of our approach is the ConfidenceModule:

TReND

NNDSVDa
Initialization 

R-NMF KMeans

NMF
Random
Initialization 

A

B

Traditional Clustering Algorithm

K-PCA ICA NMF

* **
D

ic
e

1.00

0.75

0.50

0.25

0.00
TReND kPCA ICA NMF

Methods

* **

TReND kPCA ICA NMF

Methods
Io

U

1.00

0.75

0.50

0.25

0.00

40

30

20

10

0%
 o

f M
is

la
be

le
d 

V
er

tic
es 50

TReND kPCA ICA NMF

Methods

5.8

49
43

24

Ground Truth

Traditional Feature Extraction
PCA UMAP TD

* **1.00

0.75

0.50

0.25

0.00
TReND PCA UMAP TD

Methods

D
ic

e

* **

Io
U

1.00

0.75

0.50

0.25

0.00
TReND PCA UMAP TD

Methods
TReND PCA UMAP TD

Methods

40

30

20

10

0%
 o

f M
is

la
be

le
d 

V
er

tic
es

5.8

18

44

20

TReND clustering approach

Fig. 2. Performance evaluation of TReND versus traditional parcellation methods on
simulated data. A. Left panel : The cartoon illustrates how TReND extracts features
and preserves more fine-grained details. Right panel : Comparison of feature extraction
techniques: Principal component analysis (PCA), Uniform manifold approximation and
projection (UMAP), Tensor decomposition (TD), and TReND. B. Left panel : The car-
toon shows how TReND produces spatially coherent clusters. Right panel : Comparison
of clustering methods: kernel-PCA (kPCA), Independent component analysis (ICA),
NMF, and TReND.

a two-layer multilayer perceptron (MLP) that estimates the reliability of each
embedded token. Given an embedded sequence xemb ∈ RT×B×dk (where B is
the batch size, T is the number of time points), the module computes a scalar
confidence score for each token. These scores, which range between 0 and 1, are
transformed into log domain values and combined pairwise to form the additive
confidence mask.

1. Token-wise confidence estimation: Each token is passed through the Confi-
denceModule, which applies a ReLU activation followed by a sigmoid func-
tion to produce a confidence score that reflects the reliability of the token.

2. Mask formation: The log-transformed confidence scores are summed pairwise
to produce a mask M such that for tokens i and j, the mask entry is given
by:

Mij = log(ci + ϵ) + log(cj + ϵ) (2)
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where ci and cj denote the confidence scores for tokens i and j respectively,
and ϵ is a small constant to avoid numerical instability.

This confidence-adaptive mechanism implicitly detects and down-weights over-
influencing tokens during the attention computation, ensuring that the latent
representations are dominated by reliable and discriminative features.

The transformer-based autoencoder was trained in a self-supervised manner
with a reconstruction objective for 1500 epochs on 4 A100 (80GB) GPUs, using
a batch size of 1, Adam optimizer, and learning rate scheduler starting at 1e-4
to extract 512 features. This inherently regularizes the latent space, guiding the
encoder to extract the most salient temporal features.

Feature extraction loss. To balance the trade-off between bias and variance
in the reconstruction, we employ a composite loss function that combines Mean
Squared Error (MSE) and the Mean Absolute Error (MAE):

L = λMSE · LMSE + λMAE · LMAE (3)

LMSE =
1

N

N∑
i=1

(xi − x̂i)
2 LMAE =

1

N

N∑
i=1

|xi − x̂i| (4)

where N is the is the total number of data points across time and voxels, and
λMSE and λMAE are hyperparameters that adjust the relative contribution of
each loss component.

Regularized non-negative matrix factorization with KMeans for clus-
tering. To robustly parcellate neonatal FNs, we propose a clustering approach
that synergistically integrates an advanced initialization strategy with regular-
ization parameters [25]. Our method begins with the construction of the data
matrix (V) which is derived by integrating FC matrix (Fig 1C and 2B-left panel)
obtained via temporal features with spatial encodings derived from brain surface-
based geodesic distances. The V matrix, constructed by taking the absolute aver-
age FC across subjects, is non-negative by design. This constructed data matrix
is then decomposed using RNMF.

As NMF algorithms are well known for their sensitivity to initialization; ran-
dom initialization often leads to suboptimal or unstable solutions. To mitigate
this, we employ the non-negative double singular value decomposition with aver-
aging (NNDSVDa) to initialize W (basis matrix) and H (encoding matrix) [26].
This approach provides a more reliable starting point than random initialization,
helping to position the algorithm in a favorable region of the solution space.

Clustering loss. To extract functionally and spatially coherent regions, we
introduce a loss function that both minimizes the reconstruction error and in-
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corporates regularization terms to promote sparsity and smoothness in the de-
composed factors:

L = ∥V −WH∥2F + αW ×
(
β1
W × ∥W∥1 + β2

W × ∥W∥2F
)

+αH ×
(
β1
H × ∥H∥1 + β2

H × ∥H∥2F
) (5)

where ∥.∥F denotes the Frobenius norm, ensuring that the overall reconstruction
error is minimized. ∥.∥1 promotes sparsity in the factors, essential for isolating
brain networks. The parameters αW and αH control the overall regularization
strength for the basis and encoding matrices, respectively. β1

W,H and β2
W,H bal-

ance the respective weighted contributions of the sparsity and smoothness.
After factorizing V ≈ W×H, we obtain a latent representation of each brain

voxel in W. To define final parcels, we apply KMeans on W (rows of W cor-
respond to voxels, columns correspond to latent features) (Fig 1D). This addi-
tional clustering step refines each row’s component assignments into discrete la-
bels, thereby producing coherent, biologically plausible neonatal functional brain
parcellations (Fig 1E).
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Fig. 3. Coarse parcellation of 7 functional networks in neonates derived from a 300-
subject dHCP cohort. A. Stability analysis of the clustering algorithm identifies 7 and
19 networks as robust estimates. B. Neonatal cortical parcellation of 7 FNs. C. Confi-
dence map representing the reliability of the 7 neonatal FNs parcellation. D. Discovery
and replication of the 7 neonatal FNs cortical parcellation. E. Dice score evaluation
FN-wise. F. Comparison of primary and higher-order FNs in TReND-derived neonate
atlas and existing adult atlas [3]. (Abbreviation: C.: Component)
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2.3 Evaluation of TReND framework

Given the absence of well-established functional atlases for neonates, we evalu-
ated TReND using a simulated dataset with 15 FNs as ground truth. We then ap-
plied to the dHCP cohort with 300 term neonates. To find optimal starting points
for delineation of FNs, we assessed cluster stability by splitting the ∼64K vertices
into two groups, clustering them independently, and using learned parameters
from one to predict clusters in the other [27]. The agreement between predicted
and derived clusters reflects the stability. Subsequently, the spatial confidence
map is calculated using the silhouette measure, which quantifies correlation-
based similarity to the assigned network versus the nearest alternative [28]. The
validation is further performed via bootstrap analysis across 100 combinations
using discovery and replication subsets (150 subjects each) of the dHCP co-
hort. TReND’s applicability is also tested on the HCP-YA dataset using the Yeo
7-Network atlas [3].
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Fig. 4. Fine-grained parcellation of 19 functional networks in neonates derived from a
300-subject dHCP cohort. A. Neonatal cortical parcellation of 19 FNs. B. Confidence
map representing the reliability of the 19 neonatal FNs parcellation. C. Discovery and
replication of the 19 neonatal FNs cortical parcellation. D. Dice score evaluation of
FN-wise via bootstrap analysis, assessing the consistency of the parcellation.

2.4 Validation on simulated dataset

Before applying TReND to real-world datasets, we first validated its ability
to parcellate FNs using a controlled simulated dataset. The robustness of our
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transformer-based autoencoder for feature extraction was tested by keeping the
RNMF-KMeans clustering consistent against other conventional mathematically
constrained methods, PCA, UMAP and TD. Our approach achieved a Dice of
0.92 and IoU of 0.89, with only 5.82% mislabeled vertices, indicating a ∼15%
improvement (Fig 2A). To further assess our clustering strategy, we indepen-
dently validated the RNMF-KMeans approach using features from the TReND
framework. The results also demonstrate a ∼15% accuracy gain over standalone
NMF, kPCA and ICA (Fig 2B). This validation highlights the robustness of our
framework in preserving structural patterns while mitigating noise and spurious
signals, a key challenge in neonatal fMRI data.

3 Results

3.1 Coarse parcellation of 7 and 19 functional networks in neonates

Building on the validation with the simulated dataset, we applied the TReND
framework to the dHCP cohort. Our cluster stability analyses identify 7 and 19
FNs as optimal starting points for delineation of neonatal cortex (Fig 3A). The
7 FNs atlas provide a coarse parcellation of developing networks, derived from
300 term neonates in the dHCP cohort (Fig 3B). Confidence maps reveal lower
confidence at boundary regions, suggesting further subdivision (Fig 3C). Boot-
strap analysis with 100 combinations confirms high reproducibility, with the 7
FNs atlas achieving an average Dice of ∼0.92 (Fig 3D). Network-wise variabil-
ity remains low (Standard deviation (SD) ∼0.05 Dice), except for the attention
network, which exhibits slightly higher variation (Fig 3E). We identify emerging
default network in neonates, where the absence of frontal and temporal com-
ponents reflects the incomplete maturation of higher-order FNs compared to
adults (Fig 3F) [29]. In contrast, primary networks, such as somatomotor and
visual FNs, exhibit great consistency with the adult atlas (Fig 3F). This find-
ing highlights why adult parcellation is not transferable to neonates, as several
higher-order FNs are yet to fully develop.
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Fig. 5. Validation of TReND’s performance on the HCP-YA dataset. Consistency of
the 7 FNs identified by TReND compared to the Yeo 7-network atlas evaluated with
dice.
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Similarly, the 19 FNs atlas provide a finer-grained parcellation (Fig 4A),
further fractionating low-confidence boundary regions from the 7 FNs, reflecting
the hierarchical organization of neonatal FC (Fig 4B). This atlas also achieves
an average Dice of ∼0.90, maintaining strong reproducibility despite increased
granularity (Fig 4C). Most networks exhibit an SD of ∼0.09 Dice, except for the
limbic 4 network, which shows higher variability (Fig 4D).

3.2 Cross-dataset performance of TReND using HCP-YA

Although the TReND framework is developed for the neonatal cortex parcel-
lation, we evaluated its applicability on the HCP-YA dataset using the Yeo
7-network atlas as ground truth [3]. All networks, except the limbic network,
achieved a Dice score of ∼0.7 or higher, with the somatomotor and visual net-
works reaching ∼0.9 (Fig 5). These variations may have arisen due to TReND’s
voxel-wise rather than ROI-wise approach and cohort differences.

4 Conclusion

Our study introduced TReND, a novel transformer-autoencoder framework with
RNMF for neonatal FN parcellation. Given that adult FNs are not directly trans-
ferable to neonates due to their incomplete maturation, our approach provides
a dedicated solution for neonatal brain functional organization. The resulting 7-
and 19-network parcellations aim to establish standardized neonatal functional
atlases, paving the way for future research in early brain development.
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