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Abstract. Spin-lattice relaxation time (T1) is an important biomarker
in cardiac parametric mapping for characterizing myocardial tissue and
diagnosing cardiomyopathies. Conventional Modified Look-Locker Inver-
sion Recovery (MOLLI) acquires 11 breath-hold baseline images with in-
terleaved rest periods to ensure mapping accuracy. However, prolonged
scanning can be challenging for patients with poor breathholds, often
leading to motion artifacts that degrade image quality. In addition, T1

mapping requires a voxel-wise nonlinear fitting to a signal recovery model
involving an iterative estimation process. Recent studies have proposed
deep-learning approaches for rapid T1 mapping using shortened sequences
to reduce acquisition time for patient comfort. Nevertheless, existing
methods overlook important physics constraints, limiting interpretabil-
ity and generalization. In this work, we present an accelerated, end-to-
end T1 mapping framework leveraging Physics-Informed Neural Ordinary
Differential Equations (ODEs) to model temporal dynamics and address
these challenges. Our method achieves high-accuracy T1 estimation from
a sparse subset of baseline images and ensures efficient null index estima-
tion at the test time. Specifically, we develop a continuous-time LSTM-
ODE model to enable selective Look-Locker (LL) data acquisition with
arbitrary time lags. Experimental results show superior performance in
T1 estimation for both native and post-contrast sequences and demon-
strate the strong benefit of our physics-based formulation over direct
data-driven T1 priors.

Keywords: Quantitative Cardiac MRI · Physics-Informed Neural Net-
works · Modified Look-Locker Inversion Recovery

1 Introduction

Quantitative Magnetic Resonance Imaging (qMRI) is a widely adopted nonin-
vasive technique for cardiac parametric mapping, where spin-lattice relaxation
time (T1) is routinely used as a biomarker to clinically assess myocardial tissue
and diagnose cardiomyopathies [5]. Cardiac T1 maps are generated by fitting
a parametric model to a series of baseline images that encode signal recovery
governed by spin-lattice energy exchange after an inversion pulse.
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Fig. 1. MOLLI 3(3)3(3)5 reconstruction scheme illustrating signal recovery with and
without polarity recovery. The corresponding temporally ordered MOLLI T1-weighted
images are shown above.

The Modified Look-Locker Inversion Recovery (MOLLI) [13] sequence has
become the standard protocol in cardiac qMRI due to its high precision and
reduced motion-induced artifacts. During a single breath hold, MOLLI acquires
T1-weighted images at multiple inversion times using distinct Look-Locker (LL)
experiments interleaved with rest periods. In a MOLLI 3(3)3(3)5 sequence, three
LL experiments collect images in sets of 3, 3, and 5, each separated by three
heartbeats. These acquisitions form a image series of 11 baseline images that
span the full relaxation curve, as illustrated in Figure 1. While multiple LL
experiments at different inversion times improve T1 estimation accuracy, they
also extend the breath-hold to 17 heartbeats, which can be strenuous for pa-
tients with respiratory issues. Alternative schemes such as Shortened MOLLI
(ShMOLLI) [14] and Saturation Recovery Single-Shot Acquisition (SASHA) [3]
reduce the total number of acquisitions to accelerate imaging, but inherently
trade off precision and accuracy [18,16].

Traditional T1 map estimation requires voxel-wise nonlinear curve fitting
to a signal recovery model derived from MRI physics. This process is further
complicated by the need to identify signal polarity transitions (null points) in
MOLLI sequences, requiring additional iterative calculations for each pixel. The
entire procedure is not only sensitive to image noise but also computationally
intensive - processing a complete 3D volume over time has O(n4) complexity,
resulting in significant processing delays in clinical settings without specialized
acceleration techniques [20].

Recent studies have shown that deep learning methods can accurately and ef-
ficiently perform cardiac T1 mapping using as few as three to five baseline images
along the inversion recovery curve, achieving results comparable to conventional
MOLLI. [4] introduced MyoMapNet, a fast myocardial T1 mapping model that
uses a fully connected neural network (FCNN) to directly map pairwise LL read-
outs to T1 values. However, it neglects signal polarities and is constrained to a
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data-driven T1 prior. In contrast, T1Net [11] employs a bidirectional long short-
term memory (LSTM) network [6] and adheres to the signal recovery model
to enforce consistency between acquired MRI signals and predicted T1 values
through its loss function. Nonetheless, we hypothesize that T1Net remains lim-
ited for several reasons: First, estimating T1 maps from a single LL experiment
may require non-uniform time intervals to capture the full relaxation curve. Like
other discrete recurrent neural networks, LSTMs struggle with irregular time
gaps [9,17,1]. Furthermore, although enforcing the signal recovery model pro-
vides a stronger prior than direct T1 estimation, the mechanism by which the
model learns the relaxation rate remains a black box, limiting both interpretabil-
ity and generalization.

These limitations highlight the need for a more principled approach that can
handle irregular sampling patterns while maintaining physical consistency with
the underlying MR signal dynamics. To address these challenges, we introduce a
robust and accelerated T1 mapping technique using physics-informed neural net-
works (PINNs) [15]. We employ a continuous-time LSTM-ODE [12] that can nat-
urally handle LL sequences with non-uniform acquisition intervals, overcoming
the time-gap limitations of traditional recurrent networks. Our Neural Ordinary
Differential Equation (NODE) [2] approach explicitly models the temporal dy-
namics of the relaxation process, providing a continuous representation of signal
evolution rather than discrete approximations. This dynamic modeling not only
adheres to the signal recovery model but also explicitly formulates the recovery
rate along the relaxation trajectory, ensuring that T1 estimation follows the ac-
tual physics of spin-lattice interactions. Furthermore, the framework seamlessly
incorporates signal polarity correction during inference, eliminating the need for
separate processing steps.

2 Methods

2.1 MR Physics-Informed Signal Modeling and Loss Functions

To develop our physics-informed approach, we first formalize the MR signal
model that governs T1 relaxation. In qMRI, N baseline images are collected via
selective sampling, with each image capturing the signal at a different point along
the relaxation curve. The signal intensity S(x, y, z) at a given spatial coordinate
(x, y, z) is described by a parametric function that reflects the underlying physics.
In a MOLLI sequence, the signal recovery follows a 3-parameter model expressed
as:

S(x,y,z)(ti) = c(x,y,z) · (1− k(x,y,z) · exp(−
ti

T ∗
1,(x,y,z)

)), (1)

where i ∈ {1, 2, . . . , N} and ti is the inversion time of the i-th image. The
parameter set {c, k, T ∗

1 } is estimated at each voxel v ∈ Rx×y×z to determine T1

biomarker using the following equation:

T1(x,y,z) = T ∗
1,(x,y,z) · (k(x,y,z) − 1). (2)



4 N. Capitão et al.

While Equations (1) and (2) provide the foundation for conventional T1 mapping,
they represent a static view of the relaxation process. Our approach incorporates
the underlying physical dynamics governing spin-lattice relaxation by explicitly
modeling the temporal evolution of the signal. By differentiating Equation 1, we
derive a first-order differential expression that captures the instantaneous rate
of change at each inversion time ti:

dS(x,y,z)(ti)

dt
=

c(x,y,z) · k(x,y,z)
T ∗
1,(x,y,z)

· exp

(
− ti
T ∗
1,(x,y,z)

)
. (3)

This differential formulation enables our model to learn not just the signal values
but also their temporal dynamics, providing a more complete physical represen-
tation of the relaxation process.

To incorporate both data-driven priors and physics-based constraints into
our deep-learning framework, we define a physics-informed loss function with
two components: a T1 consistency loss LT1

and a physics-based loss Lphysics.

LT1
=

1

HWD

∑
(x,y,z)

∥T1 − T̂1∥22, (4)

where T1 is derived from Equation (2), enforcing consistency with our end-goal
parametric mapping.

Lphysics =
1

NHWD

∑
(x,y,z)

N∑
i=1

∥S(ti)− Ŝ(ti)∥22 + λ∥γ dS(ti)
dt

− dŜ(ti)

dt
∥22. (5)

The first term ensures adherence to the signal recovery model (Equation (1)),
while the second term penalizes deviations from the expected signal dynamics
(Equation (3)). The scaling factor λ adjusts for the disparity in orders of mag-
nitude observed at limt→0

dS(t)
dt relative to the other loss terms. The factor γ is

derived from the chain rule and accounts for the normalization ratio applied to
signals and inversion times. By combining these complementary loss components,
we formulate our final loss function as:

Ltotal = LT1
+ Lphysics. (6)

2.2 Continuous-Time Neural ODEs for Temporal Dynamics
Modeling

To effectively capture the temporal dynamics of spin-lattice relaxation with non-
uniform sampling intervals, we implement a continuous-time LSTM-ODE frame-
work that naturally handles the irregular time gaps in MOLLI sequences. Let
{(Si, ti)}Ni=1 represent a MOLLI voxel sequence, where Si is the measured signal
at inversion time ti. At the i-th image, the LSTM’s discrete gating update is
determined by

(h̃i, ci) = LSTMCELL
(
(Si, ti), (hi−1, ci−1)

)
, (7)
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Fig. 2. Overview of the proposed physics-informed LSTM-ODE framework (a) Train-
ing: The model processes a subset of the 11 MOLLI baseline images in a voxel-wise
manner through a continuous-time LSTM-ODE. The physics-informed loss is com-
puted using {c, k, T ∗

1 }, estimated by the model. (b) Inference: For a series of IN LL
images, each voxel undergoes spin polarity correction. Every i-th image is sequentially
inverted, and the resulting sequence is evaluated using the signal reconstruction loss.
The index that minimizes the loss, argminL, determines the null index and the optimal
parameters {c, k, T ∗

1 }.

where hi−1 and ci−1 are the previous hidden and cell states, respectively, h̃i

denotes the candidate hidden state for the current image, and ci represents the
updated cell state. The candidate hidden state h̃i is then evolved continuously
over the interval [ti−1, ti] by a NODE whose dynamics are governed by

d h(t)

dt
= fθ

(
h(t), t

)
, (8)

where fθ is a small, learnable neural network. We initialize the ODE at h(ti−1) =
h̃i and integrate forward using a black-box 5th-order Dormand–Prince solver [10].
The cell states {ci}Ni=1 remain discrete to preserve stable long-term gradient
propagation [12]. The final hidden state, hN (tN ), provides a continuous-time
encoding of the relaxation trajectory, capturing the temporal variations in signal
recovery across the N images. A multi-layer decoder then maps this encoding to
the signal recovery model described by Equations (1–3). Formally, the mapping
notation can be defined as fθ : {(Si, ti)}Ni=1 ∈ RN×demb×2 → R3, where demb
denotes the feature dimension of the embedded pairwise acquisitions, and the
output represents the set of parameters {C, k, T ∗

1 }.
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This continuous-time modeling approach enables our framework to accurately
represent the underlying physics of relaxation processes while accommodating
the practical constraints of clinical MRI acquisition protocols with varying in-
version times.

2.3 Post-Inversion Spin Polarity Correction

At test time, raw signal acquisitions retain their absolute magnitudes, which con-
flicts with our model’s assumptions about post-inversion signal recovery. How-
ever, since our method is formulated around the signal recovery model, it can
also act as a proxy for retrieving the spin state polarity encoded in each im-
age. To estimate the null index at each voxel, we evaluate all possible polarity
permutations across the sequence by performing N forward passes, leveraging
vectorized, batch-wise inference over the full field-of-view (FoV). Figure 2 il-
lustrates our end-to-end T1 parametric mapping framework, which includes the
post-inversion spin polarity correction. During the polarity recovery step, each
i-th signal is inverted, and the entire sequence undergoes a model evaluation
to compute the signal reconstruction loss term in Equation 5. For each voxel
v ∈ Rx×y×z, the argminL across trials identifies the null index, providing the
best estimate of {c, k, T ∗

1 } for T1 mapping.

3 Experiments

Dataset: We used a cardiac MRI dataset of 50 subjects acquired with a 3.0T
Ingenia MR scanner (Philips Healthcare). Each subject underwent both pre- and
post-contrast MOLLI sequences, each consisting of 11 baseline images using the
same 3-3-5 scheme provided by the manufacturer. One to three axial slices were
acquired at the base, mid-ventricular, and apical levels, and the left-ventricle my-
ocardium was manually annotated as the region of interest (ROI). To prevent
data leakage, we performed a subject-wise random split: 30 subjects for training,
5 for validation, and 15 for testing. To evaluate out-of-domain generalization in
signal recovery patterns at higher relaxation rates induced by a contrast agent,
the training set included only native sequences, while the validation and testing
sets contained both pre- and post-contrast sequences.

Implementation Details: We pre-train our LSTM-ODE model on all 11 MOLLI
images and fine-tune on subsets of 3-5 images to simulate accelerated acquisi-
tion. During training, sparse readouts are strategically selected to ensure cover-
age across the relaxation curve: early phase ({t1-t3}), intermediate phase ({t4-
t8}), and convergence phase ({t9-t11}). All models are trained using ground-
truth {c, k, T ∗

1 } parameters fitted to the 11-image data with the Levenberg-
Marquardt (LM) algorithm. For the physics-based loss, we generate 1 000 in-
terpolated points with 75% linearly spaced up to 2000ms to emphasize relax-
ation dynamics. Our ODE solver uses tolerances of ϵ = 0.001 and runs on
an NVIDIA GTX 1070 GPU. We employ standard backpropagation with a
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Table 1. Mean T1 bias and SD values from Monte Carlo simulations, expressed as
mean(std). Methods: TRF, MMNet (MyoMapNet), T1N (T1Net), P-MM (PINN My-
oMapNet), P-LSTM (PINN LSTM-ODE). The best-performing methods are in bold
and second-best are underlined. For bias values, ∗ indicates no statistical significance
(p > 0.05).

Method Mean Bias (ms) Fitting SD (ms)

LL3 LL4 LL5 LL3 LL4 LL5

Native

TRF -9.63(38.21) -12.90(31.25) 15.64(18.80) 58.12(37.87) 49.66(27.16) 46.83(24.12)
MMNet 51.50(11.44) 21.49(10.13) 11.29(9.26) 91.57(36.67) 67.49(26.94) 50.47(24.36)
T1N -11.28(8.83) -8.77(11.75) 3.11∗(9.74) 94.00(34.81) 69.17(29.87) 53.33(26.82)
P-MM 0.15∗(6.62) 5.39∗(11.70) 7.71(8.90) 82.74(37.10) 62.40(31.39) 51.19(27.60)
P-LSTM 7.65(9.93) 2.62∗(7.74) 0.75∗(8.68) 91.18(38.74) 70.04(30.09) 50.65(27.43)

Post-Gd

TRF 16.68(24.57) 7.64(14.57) 11.83(12.65) 46.49(37.58) 39.95(17.48) 43.27(16.95)
MMNet 1.18(22.29) 14.23(13.86) 11.40(11.58) 73.67(17.32) 58.34(15.55) 42.65(20.45)
T1N 8.75(10.62) 8.75(10.42) 20.44(7.82) 79.99(21.78) 53.97(17.18) 41.00(16.05)
P-MM -6.52(18.47) 5.94(11.82) 11.83(9.65) 86.93(22.67) 59.24(18.94) 40.29(16.93)
P-LSTM -12.37(18.12) -1.12∗(11.48) 3.38∗(11.11) 110.75(52.40) 70.55(18.75) 42.92(20.47)

derivative loss hyperparameter of λ = 0.01. The code is publicly available at
https://github.com/nunomiguelc18/pinn-node-cardiac-t1mapping.

Comparative Studies: We benchmark our baseline model against three meth-
ods: MyoMapNet, T1Net (both designed for accelerated T1 mapping), and SciPy’s
Trust Region Reflective (TRF) algorithm for bounded parameter constraints. To
evaluate whether our physics-based priors improve performance relative to di-
rect data-driven T1 priors, we also integrate MyoMapNet’s architecture into our
framework for direct comparison.

Evaluation Metrics: We perform 100 Monte Carlo simulations per subject
using random sampling to assess generalization across LL subsets. We evaluate
two metrics: (1) mean T1 bias relative to ground truth, and (2) fitting stan-
dard deviation (SD), which measures curve fitting quality in terms of T1 at each
voxel from the fitting residuals [7,8,19]. Both metrics are calculated within my-
ocardial regions annotated by radiologists. Pixel-wise T1 estimates are averaged
over simulations to generate subject-level distributions, and systematic biases
are evaluated using paired t-tests.

4 Results and Discussion

Table 1 presents our Monte Carlo simulation results, summarizing the mean
T1 bias and SD distributions for the Native and Post-Gd testing sets. Comple-
mentary qualitative comparisons for cardiac T1 mapping are provided in Fig-

https://github.com/nunomiguelc18/pinn-node-cardiac-t1mapping
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ure 3. The PINN MyoMapNet model improved upon conventional MyoMap-
Net, demonstrating the benefits of incorporating physics during training. Our
PINN LSTM-ODE method achieved the overall lowest mean bias for both Na-
tive and Post-Gd settings, indicating stronger generalization. However, its higher
SD maps suggest that sparse representations may lead to inconsistent NODE-
computed trajectories. The TRF algorithm performs subpar in terms of mean
bias, highlighting the potential of deep learning for higher accuracy in T1 map-
ping given a limited number of baseline images. Nevertheless, TRF reports the
lowest SD map statistics, suggesting that deep learning methods still compromise
precision compared to traditional nonlinear curve-fitting approaches.
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Fig. 3. Estimated mean values of T1 and SD maps. Left: native pre-contrast sequence.
Right: post-contrast sequence.

5 Conclusions

We proposed a novel deep learning framework to accelerate MOLLI-based car-
diac T1 mapping by integrating PINNs. Our experimental results show that the
proposed PINN LSTM-ODE model outperforms alternative methods in both
accuracy and precision, particularly with limited LL samples. Furthermore, we
demonstrate that physics-informed formulations improve the performance of
models that traditionally rely on direct data-driven T1 priors, such as MyoMap-
Net. This highlights the benefits of embedding physics-based constraints into
model training. The proposed framework enables accurate T1 estimation and
efficient FoV mapping from just 3 to 5 heartbeats, matching the performance
of the conventional 17-heartbeat MOLLI sequence while significantly reducing
acquisition time.
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