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Abstract. Segmenting stroke lesions in MRI is challenging due to di-
verse acquisition protocols that limit model generalisability. In this work,
we introduce two physics-constrained approaches to generate synthetic
quantitative MRI (qMRI) images that improve segmentation robustness
across heterogeneous domains. Our first method, qATLAS, trains a neu-
ral network to estimate qMRI maps from standard MPRAGE images,
enabling the simulation of varied MRI sequences with realistic tissue con-
trasts. The second method, qSynth, synthesises qMRI maps directly from
tissue labels using label-conditioned Gaussian mixture models, ensuring
physical plausibility. Extensive experiments on multiple out-of-domain
datasets show that both methods outperform a baseline UNet, with
qSynth notably surpassing previous synthetic data approaches. These re-
sults highlight the promise of integrating MRI physics into synthetic data
generation for robust, generalisable stroke lesion segmentation. Code is
available at https://github.com/liamchalcroft/qsynth
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1 Introduction

Segmenting brain pathologies in MRI is vital for clinical and research appli-
cations, yet remains challenging due to the variability of acquisition protocols
across hospitals. Recent work shows that even for diffusion-weighted MRI - ar-
guably the modality of choice in acute stroke - dedicated CNNs can equal human
raters when trained on large, carefully curated cohorts [17]. While public datasets
achieve high performance using standardised sequences (e.g., T1w, T2w, FLAIR)
with similar parameters, clinical data rarely conforms to these ideal conditions
[21, 6]. Existing domain adaptation methods either require prior target domain
knowledge or many unlabelled images [10, 25], and synthetic approaches like
SynthSeg [2] can produce unrealistic contrasts for heterogeneous stroke lesions
[1, 8].

To address these limitations, we propose generating synthetic images using
quantitative MRI (qMRI) parameters and physics-based forward models to en-
sure physical plausibility. qMRI provides voxel-level tissue properties - proton

https://github.com/liamchalcroft/qsynth
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density (PD), longitudinal relaxation rate (R1), effective transverse relaxation
rate (R∗

2), and magnetisation transfer (MT) - that enable the simulation of di-
verse MRI sequences while preserving tissue characteristics. Since acquiring full
qMRI data is time-consuming, recent deep learning methods estimate qMRI
maps from standard sequences [4, 24, 3], making large-scale synthetic data gen-
eration feasible.

We introduce two methods for domain-agnostic stroke lesion segmentation.
The first, qATLAS, trains a qMRI estimation model on MPRAGE images to aug-
ment the ATLAS dataset [16] with simulated sequences. The second, qSynth,
extends previous synthetic approaches [1, 8] by sampling qMRI maps from inten-
sity priors derived from real data, ensuring greater physical realism. By embed-
ding MRI physics into data synthesis, our framework bridges the gap between
synthetic and clinical data, thereby improving segmentation robustness across
diverse imaging domains.

2 Methods

We propose two methods, qATLAS and qSynth, for domain-agnostic stroke lesion
segmentation. Both leverage qMRI parameter maps to generate diverse, physics-
constrained training data, enhancing robustness and generalisability.

2.1 qATLAS: Estimating qMRI from MPRAGE

qATLAS fits an nnU-Net [14] that predicts four qMRI maps (PD, R1, R∗
2, MT)

from a single MPRAGE‡. Training used 51 subjects (22 healthy, 29 stroke;
80/20 split) with 3D-EPI ground-truth maps from hMRI [22]. Thus any routine
MPRAGE can be converted to qMRI and fed to our physics-based simulator.

Diverse MPRAGE images were simulated using NiTorch with parameters:
TR ∼ U(1.9, 2.5) s, TI ∼ U(0.6, 1.2) s, TE ∼ U(2, 4) ms, α ∼ U(5◦, 12◦), and
B0 ∼ U(0.3, 7) T.

Data Augmentation: We applied standard augmentations (elastic/affine
deformations, bias field, Gibbs ringing, Rician noise, and random cropping to
1923 voxels) using MONAI [7]. Figure 1 illustrates examples of the augmented
training data.

Model Architecture and Training: Our U-Net comprises five encoder
stages (channels: 24, 48, 96, 192, 384), each with two residual units, using GELU
activations [13], instance normalisation [23], linear upsampling, and 0.1 dropout.
The network outputs four channels corresponding to PD, R1, R∗

2, and MT. To
enforce positivity, PD, R1, and R∗

2 are computed as the exponential of their raw
outputs, while MT is computed as 100 times the sigmoid of its raw output.

Training was performed over 200,000 iterations (batch size 1) using AdamW
(lr=10−4, β1 = 0.9, β2 = 0.999, weight decay=0.01). An initial 20,000 iterations

‡Estimating R∗
2 from one T1 is ill-posed; errors mainly affect simulated

T2w/FLAIR.
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Fig. 1: Examples of training data for qMRI parameter map prediction in the
qATLAS method.

used L2 loss; thereafter, we employed a combined loss L = L1(y, ŷ) + L2(y, ŷ) +
L1(∇y,∇ŷ) + L2(∇y,∇ŷ) augmented by a perceptual LPIPS loss [27] (weight
0.1) using features from a pretrained Med3D encoder [9].

Figure 2 displays examples of predicted qMRI maps from input MPRAGE
images in the ATLAS dataset [16].

Fig. 2: Examples of predicted qMRI parameter maps from input MPRAGE im-
ages of the ATLAS dataset in the qATLAS method.
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Simulation of MRI Sequences: We used the estimated qMRI maps from
the ATLAS dataset to simulate diverse MRI sequences via a physics-based gen-
erative model (see Section 2.3), thereby creating the qATLAS dataset for segmen-
tation training.

2.2 qSynth: Synthesising qMRI Maps from Tissue Labels

The qSynth method generates synthetic qMRI maps directly from segmenta-
tion labels using label-conditioned Gaussian Mixture Models (GMMs). We first
define prior distributions for each qMRI parameter (PD, R1, R∗

2, MT) for dif-
ferent tissue types (gray matter, white matter, cerebrospinal fluid, and lesions).
These priors are estimated from the population used in qATLAS (for anatomy or
pathology where real data is not available, it is feasible that parameters could be
estimated based on values reported in literature). For each voxel in a segmenta-
tion label, the corresponding qMRI parameters are sampled from the appropriate
prior, thereby producing a synthetic qMRI map that reflects realistic tissue prop-
erties. Healthy tissue maps are obtained using the Multibrain SPM toolbox [5],
and lesion masks are generated by overlaying random binary lesion maps onto
these healthy tissue maps (see [8] for further details).

Simulation of MRI Sequences: The synthetic qMRI maps are then used
with our physics-based generative model (Section 2.3) to simulate diverse MRI
sequences, resulting in the qSynth dataset for training an alternative segmen-
tation model.

2.3 Physics-Based Generative Model

Both qATLAS and qSynth use a physics-based generative model to simulate
realistic MRI images from qMRI parameter maps via standard signal equa-
tions. We simulate several common MRI sequences, including Fast Spin-Echo
(FSE), Gradient-Echo (GRE), Fluid-Attenuated Inversion Recovery (FLAIR),
and Magnetisation-Prepared Rapid Gradient Echo (MPRAGE).

For example, the FSE signal is computed as:

SFSE = B1 PD
(
1− e−R1TR

)
e−R2TE ,

where B1 is the receive field strength, PD is the proton density, R1 and R2 (≈
R2∗) are the relaxation rates, and TR and TE are the repetition and echo times,
respectively. Similar equations are used for GRE, FLAIR, and MPRAGE se-
quences.

Acquisition parameters (e.g., TR, TE , TI , TX , TD, and α) were sampled from
physically plausible distributions; please refer to our code repository§ for the
complete sampling details.

§https://github.com/liamchalcroft/qsynth

https://github.com/liamchalcroft/qsynth
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To mimic realistic MRI data, we add Rician noise by perturbing the simu-
lated signal SMRI with independent Gaussian noise on the real and imaginary
components:

Snoisy =
√

(SMRI + nr)2 + n2
i , nr, ni ∼ N (0, σ2).

All simulations and noise additions were implemented using the NiTorch li-
brary¶. Additional augmentations - such as elastic deformations, bias field vari-
ations, axis flips, Gaussian noise, low-resolution reslicing, and random cropping
to 192× 192× 192 voxels - were applied using MONAI [7].

2.4 Segmentation Model Training

We trained nnUNet-based segmentation models [14] on four settings: (i) real
MPRAGE images from the ATLAS dataset (baseline), (ii) the qATLAS dataset
(from MPRAGE-derived qMRI maps), (iii) a synthetic data model using the
public Synth method [8], and (iv) the qSynth method. The qSynth method dif-
fers from Synth in that Synth directly samples the random tissue intensities,
while qSynth uses intensity priors to first synthesise qMRI parameter maps,
which may then be used to generate realistic tissue intensities via random vari-
ations of real forward models. For Synth and qSynth, we additionally evaluated
models trained on a mixture of synthetic and real ATLAS images.

Model Architecture and Training Details: All models use PReLU acti-
vations [12] with one residual unit per block. The qATLAS model performs binary
segmentation (background vs. stroke lesion), while the qSynth model predicts
additional healthy tissue classes (gray matter, white matter, GM/WM partial
volume, and cerebrospinal fluid). Baseline and qATLAS models were trained on
the ATLAS dataset (N=419/105/131 train/validation/test), whereas Synth and
qSynth models used ATLAS lesion labels combined with healthy tissue labels
from OASIS-3 (N=2579/100 train/validation) as detailed in [8].

All models were optimised using a combined Dice and cross-entropy loss with
the AdamW optimiser [19] (lr=10−4, β1 = 0.9, β2 = 0.999, weight decay=0.01)
and a learning rate scheduler ηn = η0 (1 − n

N )0.9. Training was run for 700,000
iterations with a batch size of 1.

3 Experiments

We evaluated segmentation models on four datasets: ATLAS, comprising 131
subjects (isotropic MPRAGE) [16] for in-domain evaluation; ARC, with 229
subjects (T1w, T2w, FLAIR) [11, 15] for out-of-domain testing; PLORAS, con-
sisting of 406 subjects (106 T2w, 300 FLAIR) from various UK hospitals; and
ISLES 2015, including 28 subjects (T1w, T2w, FLAIR, DWI) [20] with acute
lesions.

¶https://github.com/balbasty/nitorch

https://github.com/balbasty/nitorch
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All scans were resliced to 1 mm, histogram–normalised and z-scored, then
segmented with a 1923 sliding window (50 % overlap, Gaussian blending) and 8-
flip TTA [26]. For multi-modal sets (ARC, ISLES15) we averaged per-voxel logits
across contrasts before soft-max and post-processing (reported as ’Ensemble’).
Dice and HD95 (95-percentile Hausdorff, mm) were computed on predictions/GT
padded to 2563; only the lesion channel is reported for Synth/qSynth.
Dataset caveat. Synth/qSynth are trained on a much larger multi-site cohort
with multi-class labels, whereas qATLAS and the baseline use ATLAS only (binary
masks). Thus absolute score differences combine physics, training-set size, label
granularity and pre-stripped skulls in ISLES15; isolating each factor is left for
future work.

4 Results

Fig. 3: Dice metric performance for all datasets.

ATLAS: The ATLAS test set is considered in-domain. The baseline model
is expected to perform optimally, while the qMRI generator model must accu-
rately reproduce MPRAGE details to match this performance. As shown in Ta-
bles 1 & 2 and Figure 3, the baseline outperformed the qMRI-based methods,
with no statistically significant differences except between Synth and qSynth.
Notably, qSynth significantly outperformed Synth, indicating that the physics-
constrained pipeline reduces domain shift between simulated and real data.
ARC: The ARC dataset exhibits moderate domain shift in the T1w channel
and larger shifts in T2 and FLAIR. As shown in Tables 1 & 2 and Figure 3,
qATLAS underperformed relative to the baseline (though not significantly). For
T1w, qSynth initially lagged behind Synth but reached comparable performance
when real data was integrated; in T2w, qSynth outperformed all models, and in
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Table 1: Median Dice (top line) and 95 % CI (tiny line). Best, second, and third
best are bold, underlined, and italic.
Dataset Modality Baseline qATLAS Synth Synth+Real qSynth qSynth+Real

ATLAS T1w 0.575
(0.522–0.628)

0.508
(0.460–0.556)

0.197
(0.155–0.239)

0.482
(0.431–0.534)

0.294
(0.250–0.338)

0.501
(0.450–0.551)

ARC

T1w 0.752
(0.713–0.790)

0.710
(0.673–0.747)

0.467
(0.430–0.504)

0.723
(0.684–0.762)

0.394
(0.359–0.429)

0.683
(0.643–0.723)

T2w 0.000
(0.000–0.007)

0.395
(0.363–0.426)

0.626
(0.588–0.665)

0.268
(0.233–0.302)

0.674
(0.640–0.709)

0.691
(0.655–0.726)

FLAIR 0.122
(0.076–0.169)

0.032
(0.005–0.059)

0.096
(0.070–0.123)

0.141
(0.097–0.185)

0.344
(0.300–0.388)

0.382
(0.332–0.431)

Ensemble 0.012
(0.000–0.032)

0.586
(0.549–0.622)

0.597
(0.562–0.631)

0.602
(0.566–0.638)

0.676
(0.642–0.709)

0.735
(0.701–0.770)

PLORAS T2w 0.000
(0.000–0.006)

0.085
(0.049–0.122)

0.204
(0.150–0.258)

0.126
(0.073–0.179)

0.304
(0.253–0.356)

0.288
(0.238–0.338)

FLAIR 0.000
(0.000–0.002)

0.000
(0.000–0.017)

0.328
(0.298–0.358)

0.294
(0.264–0.325)

0.361
(0.333–0.388)

0.309
(0.283–0.335)

ISLES15

T1w 0.000
(0.000–0.064)

0.252
(0.142–0.363)

0.304
(0.213–0.396)

0.110
(0.012–0.208)

0.002
(0.000–0.078)

0.013
(0.000–0.087)

T2w 0.000
(0.000–0.002)

0.082
(0.000–0.170)

0.074
(0.000–0.184)

0.111
(0.007–0.216)

0.222
(0.114–0.329)

0.225
(0.117–0.333)

FLAIR 0.000
(0.000–0.000)

0.004
(0.000–0.052)

0.372
(0.255–0.489)

0.212
(0.085–0.340)

0.392
(0.281–0.504)

0.332
(0.226–0.439)

DWI 0.000
(0.000–0.000)

0.001
(0.000–0.027)

0.082
(0.000–0.168)

0.056
(0.000–0.144)

0.243
(0.155–0.331)

0.162
(0.076–0.249)

Ensemble 0.000
(0.000–0.000)

0.048
(0.000–0.123)

0.272
(0.157–0.388)

0.423
(0.302–0.545)

0.335
(0.222–0.448)

0.404
(0.284–0.524)

FLAIR and ensemble evaluations, it achieved statistically significant improve-
ments, highlighting its robustness under domain shift.
Why do real scans help more in some contrasts than others? We currently model
the entire lesion with a single Gaussian intensity prior. This approximation
is adequate for T2w or FLAIR images, where stroke lesions are nearly isoin-
tense within the lesion core, so mixing in real data offers only marginal gain
and can even dilute the synthetic coverage. In T1w scans stroke appearance is
markedly more heterogeneous, so a single-mode prior under-represents the true
lesion distribution. Injecting real ATLAS images therefore supplies the missing
high-variance examples and yields the largest Dice improvement for T1w. Future
work could address this imbalance by using multi-modal lesion priors.
PLORAS: The PLORAS dataset, containing real clinical data from UK hos-
pitals, highlights the superiority of qSynth over baseline and qATLAS models
as seen in Tables 1 & 2. qSynth also demonstrated moderate but consistent im-
provements over Synth, reflecting its capacity to generalise effectively to diverse
real-world clinical scenarios.
ISLES 2015: The ISLES 2015 dataset, featuring co-registered T1w, T2w, FLAIR,
and DWI channels with acute stroke lesions, posed unique challenges. DWI chan-
nels, absent in qMRI simulations, were unseen during qATLAS/qSynth training.
Nevertheless, qSynth significantly outperformed all models, including Synth,
which could have trained on DWI-like data. qSynth achieved the highest Dice
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Table 2: 95th-percentile Hausdorff distance (HD95, mm) - median on top, 95
% CI beneath. Lowest, 2nd-lowest, and 3rd-lowest scores are bold, underlined,
and italic.
Dataset Modality Baseline qATLAS Synth Synth+Real qSynth qSynth+Real

ATLAS T1w 19.7
(10.2–29.3)

34.4
(26.5–42.2)

63.7
(59.6–67.9)

22.6
(12.0–33.3)

51.3
(43.5–59.2)

38.0
(28.2–47.8)

ARC

T1w 8.8
(2.5–15.0)

11.8
(5.6–18.1)

57.1
(52.9–61.3)

11.0
(4.0–18.0)

31.0
(26.6–35.5)

13.0
(6.8–19.2)

T2w 74.4
(71.4–77.4)

54.5
(50.7–58.2)

46.1
(42.2–50.0)

64.0
(60.5–67.4)

39.0
(34.8–43.2)

43.0
(38.7–47.2)

FLAIR 58.5
(49.5–67.4)

59.7
(50.7–68.7)

57.6
(49.2–65.9)

52.2
(43.3–61.1)

50.3
(41.3–59.2)

44.0
(34.5–53.5)

Ensemble 48.2
(40.1–56.3)

16.4
(10.9–22.0)

44.0
(39.9–48.2)

20.1
(14.8–25.3)

31.6
(27.2–36.0)

20.7
(16.2–25.2)

PLORAS T2w 70.9
(65.9–76.0)

59.6
(54.4–64.8)

67.5
(61.3–73.7)

70.3
(64.9–75.8)

60.4
(54.6–66.3)

60.7
(55.2–66.3)

FLAIR 66.8
(61.2–72.4)

65.4
(58.4–72.3)

69.7
(66.8–72.6)

74.3
(71.4–77.2)

73.3
(70.4–76.2)

73.0
(70.2–75.7)

ISLES15

T1w 69.8
(30.0–109.7)

51.5
(40.0–63.0)

58.6
(48.5–68.6)

52.5
(29.9–75.0)

56.3
(19.6–93.1)

56.3
(17.8–94.8)

T2w 63.1
(57.8–68.4)

59.4
(43.3–75.4)

72.3
(65.7–78.9)

75.0
(68.4–81.7)

66.1
(58.3–73.8)

67.7
(59.8–75.6)

FLAIR 71.8
(38.5–105.2)

65.8
(51.2–80.5)

56.1
(49.5–62.7)

56.1
(38.7–73.4)

64.5
(55.0–73.9)

66.0
(57.5–74.5)

DWI 83.7
(57.3–110.2)

75.9
(71.2–80.6)

83.7
(76.3–91.0)

84.9
(77.2–92.6)

75.7
(67.9–83.5)

74.4
(67.1–81.7)

Ensemble 256.0
(0.0–256.0)

60.2
(25.9–94.4)

60.1
(49.7–70.5)

47.3
(24.2–70.4)

67.5
(59.7–75.3)

56.3
(48.1–64.5)

scores for T2w and FLAIR modalities, while both Synth and qSynth showed
strong ensemble performance. For T1w, qATLAS and Synth achieved the best
results. The dataset’s skull-stripped images likely conferred an advantage to
Synth/qSynth models compared to other methods.

5 Conclusion

We proposed two physics-aware generators for stroke-lesion segmentation train-
ing: qATLAS, which derives qMRI maps from a single MPRAGE, and qSynth,
which samples qMRI from learned intensity priors. qATLAS boosts T1-weighted
performance but degrades on contrasts dominated by non-R1 parameters; qSynth
delivers the most consistent cross-domain gains, yet both remain below fully
in-domain models. Future work should explore domain adaptation techniques
or domain-conditioning via hypernetworks to further close this gap. Addition-
ally, our framework can be extended to other tasks (e.g., registration, super-
resolution), other pathologies (e.g. glioblastoma), and other anatomies (e.g.,
cardiac, abdomen). We also plan to integrate recent advances in more realis-
tic lesion simulations [18] to further enhance synthetic data fidelity. Overall,
embedding MRI physics in data generation represents a promising step toward
robust, generalisable segmentation in diverse clinical scenarios.
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