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Abstract. Segmenting acute and hyper-acute brain lesions in neona-
tal hypoxic ischemic encephalopathy (HIE) from diffusion-weighted MRI
(DWI) is critical for prognosis and treatment planning but remains chal-
lenging due to severe class imbalance and lesion variability. We pro-
pose a computationally efficient 2D segmentation framework leveraging
ADC and Zapc maps as a three-channel input to UNet++ with an
Inception-v4 encoder and scSE attention for enhanced spatial-channel
recalibration. To address class critical imbalance and lack of volumetric
context in 2D methods, we introduce a novel boundary-and-region-aware
weighted loss integrating Tversky, Log-Hausdorff, and Focal losses. Our
method surpasses state-of-the-art 2D approaches and achieves compet-
itive performance against computationally intensive 3D architectures,
securing a DSC of 0.6060, MASD of 2.6484, and NSD of 0.7477. These
results establish a new benchmark for neonatal HIE lesion segmentation,
demonstrating superior detection of both acute and hyper-acute lesions
while mitigating the challenge of loss collapse. The code is available at
https://github.com/BONBID-HIE /Neonatal- HIE-SPARSeg!.

Keywords: Neonatal Hypoxic Ischemic Encephalopathy (HIE) - Diffu-
sion Weighted MRI (DWI) - 2D Lesion Segmentation.

1 Introduction

Hypoxic ischemic encephalopathy (HIE) is a type of brain dysfunction (lesion
injury) that occurs when the infant’s brain experiences a sudden decrease in
oxygen or blood flow during the prenatal, intrapartum, or postnatal period [10].
HIE affects around 1 to 5 per 1000 term-born infants, leading to significant long-
term neurocognitive deficits such as developmental delays, cognitive impairment,
cerebral palsy, epilepsy, or death in about 30%-50% of cases despite receiving
therapeutic hypothermia treatment [2]. Accurate identification of brain lesions in
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neonatal MRIs is critical for prognosis, treatment evaluation, and understanding
disease progression with the help of reliable biomarkers and detection methods.
However, HIE lesions are often hyper-acute and multi-focal, posing challenges
for algorithms that perform well on larger, focal lesions like brain tumors.

Apparent Diffusion Coefficient (ADC) maps help address this challenge by
measuring the magnitude of water diffusion within a voxel of brain tissue and
are calculated using Diffusion-Weighted MRI (DWI) in clinical settings [8]. The
degree of reduction in ADC is correlated with the severity of the injury, indicating
areas of decreased water diffusion. However, the normal range of ADC varies
in space (different brain regions) and in time (as the brain develops rapidly
during infancy) [4/11], making expert interpretation error-prone. For example,
an ADC value of 800 (x10~% mm?/s) may be considered normal for cortical gray
matter, where ADC values typically range from 780 — 1090 (x10~¢ mm?/s) [5].
However, the same ADC value in white matter, where normal ADC ranges from
620 — 790 (x 10~ mm?/s), could be considered lesioned. This regional variability
underscores the challenge of using fixed ADC thresholds for lesion detection [2].

Therefore, Z-Score ADC (Zapc) was proposed to quantify deviations in a
patient’s ADC values relative to the normative brain-specific range [2/19]. Nor-
mative ADC atlases, built from healthy neonates, provide voxel-wise mean and
standard deviation of ADC values. The patient’s ADC map is deformably regis-
tered to the atlas space, ensuring anatomical correspondence across voxels. The

Zapc at each voxel x is computed as Zapc(x) = %’ where I(x) is the
ADC value at voxel x, and ¢(x) denotes its atlas-mapped location via deforma-
tion ¢. This enables voxel-wise normalization and highlights regions of abnormal
diffusion relative to normative variability. Comparisons are made by threshold-
ing them at values of —1.5, —2, and —2.5, Zypc € [—10,10]. Evaluating the
accuracy of predicted masks using Dice Similarity Coefficient (DSC), sensitivity,
and specificity, Bao et al. [2] demonstrated the highest DSC (0.54 £+ 0.28) at a
threshold of —2. This threshold provided the best balance of accuracy and con-
sistency in lesion detection across subjects, further highlighting the effectiveness
of Zapc maps in lesion detection.

Given the current challenges of spatial variability and multi-focal nature of
HIE lesions, Toubal et al. [3] integrated Swin-UNETR, a vision transformer-
based segmentation model, with random forest classifier to enhance local fea-
ture discrimination. Their approach processes ADC and Zapc maps to generate
a voxel-wise lesion probability map, segmented into overlapping 5 x 5 2D patches
and classified using random forest. While effective for small datasets, the method
is computationally intensive due to quadratic self-attention, 3D voxel-wise dis-
tance transforms, and sliding-window patch classification overhead. Building on
CNN architectures, Koirala et al. [7] proposed an ensemble of six 3D UNet vari-
ants, including dual-branch and attention-based architectures, with a hybrid loss
combining BCE, MS-SSIM, and Jaccard Loss. Stratified 5-fold cross-validation,
gradient accumulation, and sigmoid-averaged ensembling improved robustness
and mitigated over-fitting. However, this approach incurs a high computational
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overhead arising due to multiple volumetric inferences and multi-scale loss com-
putations, making training memory intensive.

In this work, we present a computationally efficient 2D segmentation frame-
work for critically imbalanced, acute and hyper-acute lesion detection in neonatal
HIE from sparsely sampled volumetric ADC. To achieve this we propose,

(a) A three-channel input representation of ADC, Zapc, and Zapc thresh-
olded at —2 (Zapc<—2) improving lesion detectability through enhanced
diffusion-based feature representation.

(b) A 2D framework, based on UNet++ with InceptionV4-based encoder and
scSE attention, leveraging both spatial and channel recalibration for im-
proved feature extraction.

(¢) Tversky-Log-Hausdorfl-Focal (TLHF) loss, a boundary and region-aware
weighted loss designed to address loss collapse, where weak supervision sup-
presses gradient updates and leads to near-zero lesion predictions. TLHF
improves spatial context, boundary delineation, and stabilizes gradient flow
in highly imbalanced lesion segmentation.

Extensive results validate the effectiveness of our 2D framework, demonstrat-
ing competitive performance against computationally intensive 3D architectures.

2 Dataset

The BOston Neonatal Brain Injury Dataset for Hypoxic Ischemic Encephalopa-
thy (BONBID-HIE) [2] is the first public HIE dataset comprising of skull-
stripped Apparent Diffusion Coefficient (ss-ADC) and Zapc maps with man-
ually annotated lesion masks for 133 neonates. Patients had volumetric scan
resolutions ranging from 128 x 128 x D to 256 x 256 x D, where D € [16,64].
The train set consisted of about 89 patients, whereas the test set included 44 pa-
tients. All subjects were term-born neonates with clinically diagnosed HIE; scans
were acquired at a mean age of 3.9 + 2.7 days. Lesion volume analysis stratified
patients into hyperacute (< 1%, N=74), acute (1-5%, N=26), and severely acute
(> 5%, N=33) categories based on the percentage of DWI-visible abnormalities
relative to brain volume. The large and uneven inter-slice gaps (2-6 mm), which
are common in real-world neonatal MRI substantially reduce slice-to-slice corre-
lation, limiting the effectiveness of 3D convolutions, which tend to over-smooth
distant anatomy or introduce spurious continuity. Consequently, a 2D slice-based
framework was better suited for this dataset’s anisotropic resolution.

3 Methodology

3.1 Inputs and Pre-Processing

As shown in Figure[l} ADC, Zapc, and a binary thresholded mask (Zapc<—2)
€ {0,1} were stacked slice by slice along the axial axis. The thresholded mask
was generated by applying a threshold of —2 to Zapc, where pixels <—2 were
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Fig. 1. Overview of our 2D segmentation pipeline using the thresholded Zapc as a
spatial prior channel. The addition of scSE attention enhances small lesion detection,
with training guided by a novel region- and boundary-aware TLHF loss.

given a positive label, while the remaining were assigned a negative label, cre-
ating a binary representation. These stacked three channel images were then
resampled to a resolution of (256 x 256) using nearest-neighbors interpolation
to prevent data distortion or addition of artifacts. To remove noise, ADC maps
were clipped to eliminate negative pixel values captured during scanning. Next,
min-max normalization was applied such that ADC [0, 3400] and Zapc [—10, 10]
were scaled to [0, 1], ensuring uniform pixel intensity. To introduce diversity in
input representations, non-aggressive dynamic augmentations such as random
flips, gamma correction, anisotropic transformations and blurring were applied.

3.2 Network Architecture

UNet++ [2I] extends UNet [I3] by introducing dense nested skip connections
which progressively bridge the semantic gap between encoder and decoder fea-
ture maps. This enhances multi-scale feature aggregation and information flow.
Additionally, deep supervision at multiple decoder stages ensures better gradient
propagation, enabling the model to capture both global context and fine-grained
features, which is critical for precise medical image segmentation. For 2D brain
lesion segmentation, a three-channel input ADC - Zapc - Zapc<—2 is stacked,
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normalized, and then fed into the Inception-v4 encoder blocks [16], constituting
an early fusion strategy that enables joint reasoning over continuous (raw, stan-
dardized) and binary (thresholded) diffusion cues. Spatial and Channel Squeeze-
and-Excitation (scSE) blocks [14] are applied after each encoder-decoder block to
enhance feature representation via dynamic intra-feature recalibration, serving
as a lightweight fusion mechanism across spatial and channel dimensions. The
Channel Squeeze-and-Excitation (cSE) branch applies global average pooling to
compute channel-wise attention while, the Spatial Squeeze-and-Excitation (sSE)
branch uses 1x1 convolution and sigmoid activation to generate a spatial atten-
tion map, emphasizing pixel-level regions with higher importance. Concurrent
recalibration by the ¢SE and sSE blocks, combined via element-wise addition,
enhances lesion boundary delineation: (USCSE = ch E+ Uss E)-

3.3 Loss Function

Tversky Loss [15] is a generalized Dice Loss (F-score equivalent) with tun-
able parameters « and 8 to control false positive and false negative penalties,
improving performance on imbalanced datasets,

> vey P(v)q(v)
vev [P(0)q(v) + a(l = q(v))p(v) + B(1 — p(v))q(v)]

LTversky(pa CI) =1~ E . (1)

Focal Loss [9] is a variant of Cross-Entropy loss that focuses more on hard
misclassified examples using a focusing parameter -y,

Lroca(p.0) =~ 3 -a(0) - (1= p(0)” oB(o(v)), ®)
veV

where, the weighting factor « balances the importance of positive and negative
samples, while v > 0 reduces the relative loss for easy-to-classify cases.

Log-Hausdorff Loss [6] captures boundary discrepancies by incorporating dis-
tance transforms (d,(v) and dg(v)), with a logarithmic term enhancing sensitivity
to small errors,

Lru(p,q) =log (1 + ﬁ > (p(v) = a(®)) - (dpv)* + dq(v)a)> SC)

veV

Tversky-Log-Hausdorff-Focal Loss — our customized boundary-and-region-
aware loss, is a weighted combination of the above mentioned losses,

Lrrur(p,q9) =1 - Lrversky + You - Log + YL - LEocal- (4)
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3.4 Hyperparameters, Training Strategy, and Evaluation

Training was performed on an NVIDIA RTX A5000 (24GB) for 75-100 epochs
with a batch size of 16, using early stopping with a patience of 15-20 epochs.
Model weights were initialized using Xavier uniform distribution, and optimized
using Adam with an initial learning rate of 0.0001, adjusted using ReduceLROn-
Plateau scheduler. TLHF Loss is a combination of Tversky (o = 0.3, 8 = 0.7,
~vr = 1.5), Log-Hausdorfl (v, = 2), and Focal (y = 3, vr € {2,4}) losses. In
a lightweight +£20% grid sweep around these v values, we observed minor per-
formance variation (+0.29% DSC, +0.42% MASD, +0.37% NSD), confirming
robustness to local weight changes. yr was dynamically adjusted, initialized at
2, and linearly ramped to 4 in a curriculum-style schedule to prioritize region-
wise learning early and emphasize small, hard lesions later. A sigmoid threshold
of 0.35 was empirically found to yield optimal binary segmentation performance.

Evaluation Metrics. Segmentation accuracy is assessed using Dice Similarity
Coefficient (DSC), Mean Average Surface Distance (MASD), and Normalized
Surface Distance (NSD) [12], and evaluated on the BONBID-HIE Challengeﬂ

(a) Dice Similarity Coefficient (DSC) quantifies global overlap between pre-

dicted (p) and ground truth (g) masks: DSC(p, q) = z\;\lfﬁﬁ"

(b) Mean Average Surface Distance (M ASD) measures average boundary

distance between p and ¢: MASD(p, q) = % (Zd(&((?)’f(p)) + Zd(g((z;))’lé(q))).

(¢) Normalized Surface Distance (NSD) captures surface overlap at bound-

aries within a dilated tolerance 7: NSD(p, q) = |6(q>mﬂflggggl‘i‘lg(;ﬁ)m(’°)‘.

4 Results and Inference

We structure our results to follow a modular, incremental flow across four key de-
sign dimensions: (i) we evaluate input encodings across UNet++ backbones, (ii)
we fix the best-performing encoder and input design to compare loss functions
and introduce TLHF, (iii) we apply attention (scSE) to the TLHF setup and an-
alyze performance by lesion size, and (iv) we benchmark our final model against
top 3D BONBID-HIE submissions. This progression highlights the combined
contributions of input priors, loss design, attention, and architecture choices.

Effectiveness of Input Channel Stacking. Table [T] evaluated the impact of
input channel stacking on segmentation performance using a UNet++ architec-
ture with DenseNet-161 and Inception-v4 encoders, trained with Dice-Focal loss.
Models trained on a 3-channel input (ADC, Zapc, and Zypc<—2) achieved the
highest scores across all three metrics, significantly outperforming models trained
on their 2-channel (ADC, Zapc) counterparts, with DSC improvements of up to
5.98% for DenseNet-161 and 5.83% for Inception-v4. These results suggest that

3 https://bonbid-hie2024.grand-challenge.org/
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Table 1. Effect of input channel stacking using UNet+-+ with different encoders.

Input DenseNet-161 Inception-v4
DSC(1) MASD({) NSD(1) DSC(1) MASD({) NSD(1)
ADC 0.2977 5.9840 0.3863  0.3239 5.1795 0.4361
ZADC 0.5128 3.5919 0.6689  0.5221 4.1288 0.6641
[ADC, Zapc] 0.5438 3.2168 0.6655  0.5540 3.1597 0.6800

[ADC, Zapc, Zapc<—2] 0.5763 3.1023 0.6751 0.5863 3.0711 0.6941

Zapc<—2 masks act as non-exclusive spatial lesion priors, highlighting extreme
diffusion deviations without masking borderline voxels, which remain visible via
ADC and Zapc channels, thereby enhancing regions with higher likelihood of
lesion detection. Furthermore, Inception-v4 demonstrated superior performance
across all metrics, due to its multi-scale feature extraction capability. Therefore,
Inception-v4 was used as the encoder for our whole pipeline.

Dice-Focal Loss Tversky-Log-Hausdroff-Focal Loss

+- Train Loss Validation Loss

12

Loss
Loss

N s 0 ®

Epoch Epoch

Fig. 2. (a) Loss Collapse with Dice-Focal Loss (b) Mitigating Loss Collapse by using
Tversky-Log-Hausdorff-Focal Loss

Effectiveness of Loss and Attention. Due to the nature of HIE lesions, which
are typically small and diffusely distributed, over half of the patients in the cohort
have less than 1% of their brain volume injured [2]. Directly training using Dice-
Focal loss leads to loss collapse, where lesion predictions shrink to near-zero,
resulting in minimal gradients and trapping the model in a local minimum,
as illustrated in Figure (a). Dice loss struggles with vanishing gradients, while
Focal Loss, designed to address class imbalance amplifies the issue by suppressing
false positives. Recovery from collapse occurs through stochastic perturbations,
which restores gradients and stabilizes training. Large lesions (>5%) recover
effectively due to stronger gradients, whereas smaller lesions (<1% and 1-5%)
remain underrepresented, limiting effective supervision and refinement.

To address loss collapse, we introduced a hybrid TLHF loss function com-
bining boundary-based Log-Hausdorff loss, with region-specific Tversky loss, and
class-balancing Focal loss. This approach enhanced training during early epochs,
as indicated in Figure b)7 ensuring stable gradient flow and improved hyper-
acute lesion segmentation. Performance of TLHF loss is evidenced in Tables [2]
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Table 2. Ablation of loss functions (Dice-Focal vs. TLHF) and attention (£ scSE).

Loss Attention  DSC (1) MASD (J) NSD (1)
Dice-Focal Loss None 0.5863 3.0711 0.6941
TLHF Loss None 0.6060 2.6484 0.7153
TLHF Loss scSE 0.5986 2.7986 0.7477

and [3] where it consistently outperforms Dice-Focal loss across all metrics. TLHF
demonstrates improved lesion localization as indicated by MASD (2.6484), re-
duced boundary-based pixel-level misclassification through NSD (0.7477), result-
ing in a stronger global overlap captured by DSC (0.6060). Table [3| further con-

Table 3. Performance stratified by lesion volume groups using TLHF + scSE.

Design <1% 1-5% >5%
DSC MASD NSD DSC MASD NSD DSC MASD NSD
TLHF 0.4740 4.1310 0.5997 0.6753 1.6719 0.8011 0.8132 0.8550 0.8665

TLHF +scSE 0.4776 4.2458 0.6777 0.6449 1.8769 0.7802 0.8090 0.8653 0.8626

firms that the proposed TLHF loss, combined with scSE attention, is particularly
effective for smaller lesions (<1% of brain volume), boosting NSD relatively by
13% and enhancing the model’s ability to capture fine-grained representations.

Table 4. Performance evaluation across BONBID-HIE 2023 and 2024 submissions.

Participant/Team Method Architecture DSC (1) MASD ({) NSD (1)
Sejong Al team 3D UNet 0.6262 2.5017 0.7316
Toubal et al. [3] 3D Swin-UNETR w/ RF  0.6215 2.2556 0.7678
Ours 2D UNet++ 0.6060 2.6484 0.7153
Ours 2D UNet++ w/ scSE  0.5986 2.7986 0.7477
Koirala et al. [7] 3D UNet Ensemble 0.5800 2.5993 0.7379
Wodzinski et al. [20] 3D ResUNet 0.5770 2.9419 0.7379
Tahmasebi et al. [17] 3D nnUNet 0.4998 5.3327 0.6449
Aydin et al. [1] 3D Attention UNet 0.4826 3.4626 0.6176

Comparisons with 3D Networks. Our parameter-efficient 2D models, us-
ing three channel stacked inputs, enhanced with scSE attention, and trained on
our boundary-and region-aware TLHF loss, achieve competitive performance in
volumetric segmentation tasks despite the extensive parameters and contextual
depth of 3D methods. Notably, our lightweight 2D approach matches or out-
performs several 3D benchmarks, securing the second-highest NSD score and
ranking in the top three for DSC, as shown in Table [d] demonstrating strong
performance across existing studies on neonatal HIE lesion segmentation.
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5 Conclusion

In this work, we present a computationally efficient 2D segmentation framework
for neonatal HIE lesions, leveraging a novel three-channel input including (ADC,
Zapc, and Zapc<—2) as an anatomical prior to mitigate spatial and temporal
uncertainties in ADC by encoding region-specific diffusion deviations. We intro-
duce a hybrid region-and boundary-aware loss function, Tversky-Log-Hausdorff-
Focal loss, that effectively addresses lack of spatial context in 2D methods and
loss collapse in critically imbalanced datasets. Through our extensive ablation
study, we demonstrate that spatial and channel attention mechanisms signifi-
cantly enhance segmentation, particularly for hyper-acute (<1%) lesions. Our
findings establish that our parametrically efficient 2D framework, outperforms
resource-intensive 3D architectures, setting a new benchmark for neonatal HIE
lesion segmentation. Future work can explore ConvLSTM-based approaches [18]
to model 3D data sequentially for improved spatial coherence along with mid-
level or modality-aware fusion strategies, such as dual-stream encoders or cross-
attention, to further enrich multi-contrast feature integration.
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