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Abstract. Diabetic retinopathy (DR) is a major cause of vision im-
pairment, with early detection playing a crucial role in preventing irre-
versible blindness. While deep learning-based automated DR grading has
improved diagnostic efficiency, class imbalance in public datasets hin-
ders reliable performance evaluation, particularly for underrepresented
DR stages. Current state-of-the-art classifiers achieve high overall accu-
racy but suffer from poor balanced accuracy, limiting their real-world
applicability. Inspired by recent advancements in diffusion models, we
propose to mitigate class imbalance by generating synthetic fundus im-
ages. Unlike prior methods prioritizing visual quality, we introduce a
semantic quality metric based on classifier-predicted likelihood to selec-
tively filter synthetic samples that enhance classification performance.
Furthermore, we incorporate explicit class constraint during diffusion
model finetuning to generate more semantically relevant data. Experi-
mental results demonstrate a significant improvement in balanced clas-
sification accuracy from 66.84% to 74.20%, highlighting the effectiveness
of our approach in improving DR diagnosis. Our code is available at:
https://github.com/AlanZhang1995/ECC_DM_for_DR.git.
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1 Introduction

Diabetic retinopathy (DR) is a leading cause of blindness and visual impairment,
particularly among the diabetic population [4]. It is characterized by retinal
lesions like microaneurysms, hemorrhages, and exudates. DR progresses through
five stages: no DR, mild, moderate, severe, and proliferative DR, with increasing
severity raising the risk of vision loss [28]. As prolonged pathological states can
block retinal blood vessels, early detection and grading are crucial to prevent
irreversible blindness. The DR diagnostic standard has been well established on
colored fundus imaging, but the shortage of ophthalmologists and the growing
diabetic population strain healthcare systems. Consequently, computer-assisted
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tools [6,19], including deep learning-based DR grading systems [7,10,34], are
becoming vital to improve screening efficiency, enhance diagnostic accuracy, and
ease the burden on healthcare professionals.

Recent advancements in convolutional neural networks (CNNs) have greatly
improved automated DR detection. Early models like CABNet [7] used category
and global attention mechanisms for better small lesion detection, while later
models, such as weakly-supervised lesion-aware networks [10] and transformer-
guided attention networks [34], further refined performance. However, the effec-
tiveness of these models is heavily influenced by dataset characteristics, partic-
ularly the data distribution along different DR stages [34].

Public datasets like DDR [13] usually exhibit a severe class imbalance, with
approximately half images classified as no DR, while pathological images, partic-
ularly mild, severe, and proliferative DR, are underrepresented. This imbalance
leads to poor recognition performance for underrepresented categories, as ob-
served in the confusion matrix reported in Figure 7 of [34]. Despite achieving
an accuracy of 83.1%, the state-of-the-art (SOTA) classifier fails in real-world
applications due to frequent misclassification of mild and severe DR cases. This
limitation underscores the need for an alternative evaluation metric—balanced
accuracy [5], which averages accuracy across all five categories. Notably, this
SOTA classifier achieves only 63.4% in balanced accuracy, highlighting the ur-
gency of addressing class imbalance for reliable DR diagnosis.

Inspired by recent advancements in diffusion models [22,20,29] for data syn-
thesis in computer vision tasks [32,27,33], we adapt these models to generate
synthetic data samples to mitigate class imbalance in DR datasets. Unlike most
existing image generation methods focused on visual quality, our primary aim is
to improve classification accuracy. Previous research [15] has shown a trade-off
between visual and semantic quality in image restoration. Experiments in [32]
also shows that it is not necessary that more realistic synthetic data is more
effective for classifier training. Therefore rather than relying on visual quality
oriented metrics like FID [8] or IS [25], we introduce an alternative by using
the likelihood predicted by a group of pretrained classifiers as a semantic quality
metric. This allows us to selectively choose synthetic samples that further benefit
the classification performance. Additionally, we proposed to incorporate explicit
class constraint [35] during the diffusion model’s finetuning process, guiding the
model to generate samples with higher semantic relevance. Experimental results
show that the semantic-oriented metric effectively filters the synthetic data and
our proposed finetuning strategy achieves an improvement in balanced classifi-
cation accuracy from 66.84% to 74.20%.

2 Related Work

Deep learning based DR grading. Deep learning has been widely explored
for DR grading. Li et al. [14] leveraged pre-trained CNNs with transfer learning,
using the final fully-connected layer for feature extraction and an SVM for clas-
sification. Yang et al. [31] proposed a two-stage CNN that first detects lesions
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before grading DR, achieving promising results. Recent advancements focus on
class balance, lesion detection, and feature representation. CABNet [7] employs
category and global attention blocks to mitigate class imbalance and enhance
small lesion detection. A weakly supervised lesion-aware network [10] utilizes
lesion activation maps to improve feature discrimination without pixel-level an-
notations. Triple-DRNet [12] differentiates DR types and severity levels, while
CRA-Net [34] refines class-specific feature extraction and lesion relation mod-
eling using category-relation attention. SVPL [36] introduces a prompt-based
strategy for knowledge transfer from large pre-trained models. However, many
methods evaluate performance on imbalanced test sets, leading to biased metrics
and limiting real-world applicability despite high overall accuracy.
Diffusion model and data synthesis. Diffusion models, originating from
DDPM [9], have made remarkable advancements in text-to-image generation,
exemplified by Stable Diffusion [20,22], DALL-E [21], and Imagen [3]. These
models leverage iterative denoising to generate high-quality visuals from textual
prompts. Motivated by their generative power, researchers have explored their
potential for synthetic data generation across various domains. A significant
body of work focuses on utilizing synthetic data to enhance image segmenta-
tion [17,30], while other studies investigate its impact on image classification
[32,2] and object detection [27]. The medical imaging field has also benefited
from this approach. For instance, Sagers et al. [24] demonstrated that latent
diffusion models can generate synthetic skin disease images to improve model
performance in data-limited scenarios. Similarly, Akrout et al. [1] employed text-
to-image diffusion models to produce high-quality synthetic skin disease images,
enhancing training datasets. Oh et al. [18] introduced a diffusion-based data
synthesis technique to address class imbalance in pathology datasets, improving
both segmentation and classification outcomes. Existing methods target on data
imbalance, but overlook the semantic quality of generated samples. In contrast,
our approach ensures both diversity and semantic integrity, enhancing their ef-
fectiveness in downstream classification tasks.

3 Proposed Method

3.1 Text-to-image diffusion model finetuning on fundus images

Diffusion models [9,22] iteratively denoise a noisy sample to approximate a target
distribution, reversing a predefined Markov process. In text-to-image generation,
a trained diffusion model fθ generates an image xsync = fθ(ϵ, c) from Gaussian
noise ϵ ∼ N (0, I) and a conditioning vector c = Φ(T ), derived from a text prompt
T via an encoder Φ. The model is trained using a mean squared error (MSE)
loss to denoise a perturbed input zt = αtx + σtϵ, where αt, σt define the noise
schedule over time t ∼ U([0, 1]). By leveraging reweighted variational bounds and
convolution-based UNet architectures, these models efficiently reconstruct clean
images and achieve high-perception generation. To finetune the model for our
DR application, we use a category-conditioned prompt: “A color fundus image
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Fig. 1. Overview of our text-to-image diffusion model finetuning framework. The top
section illustrates the process of stabilizing diffusion model finetuning on fundus dataset
with limited data, as described in Section 3.1. The bottom right depicts our proposed
semantic quality evaluation and filtering pipeline, corresponding to Section 3.2. The
entire image demonstrates how semantic quality is enhanced through explicit class
conditioning during diffusion model training, as discussed in Section 3.3.

in {category} stage” where category ∈ { normal, mild DR, moderate DR,
severe DR, proliferative DR }.

Finetuning diffusion models typically requires large-scale datasets, which are
often unavailable in medical imaging. To overcome this, we use the DreamBooth
framework [23] combined with the LoRA [11] finetuning strategy. DreamBooth
enables effective training with just 3–5 images by introducing a class-specific
prior preservation loss, which helps retain prior knowledge and ensures class-
specific characteristics, reducing overfitting and preventing output degradation.

In our case as illustrated in top section of Fig.1, fundus images in the DDR
dataset [13] serve as subject-specific training samples MSEDDR, while data
for the prior-preservation term MSEprior can be sourced from any retina im-
ages. Considering that fundus is the most common retina image modality, in
our experiments, we incorporate fundus images from external datasets such as
EyePACS3 and APTOS4 for prior-preservation loss computation. Specifically,
we construct prompts in the format: “A color fundus image from {name}
dataset in {category} stage”, where name ∈ { DDR, EyePACS, APTOS }. This
integration of additional datasets ensures that the model learns particular fea-
tures in DDR dataset while maintaining fundus image knowledge.

3.2 Semantic quality based evaluation and filtering

With the training strategy detailed in last section, we finetune a diffusion model
specifically for fundus image generation within the DDR dataset domain. How-
3 https://www.kaggle.com/c/diabetic-retinopathy-detection/
4 https://www.kaggle.com/competitions/aptos2019-blindness-detection

https://www.kaggle.com/c/diabetic-retinopathy-detection/
https://www.kaggle.com/competitions/aptos2019-blindness-detection
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ever as evidenced by our results in Table 1, it is suboptimal in enhancing clas-
sification performance by simply mixing synthetic samples with real ones to
form an augmented training set. Prior research [15] has established that, in im-
age restoration area, optimal classification performance is not achievable when
images undergo restoration with distortions or perceptual losses alone. Addition-
ally, previous experiments [32] suggest that more realistic synthetic data does
not necessarily lead to better classifier training. Given these observations, we
explore alternative metrics to assess the semantic quality of generated images,
rather than relying solely on visual quality.

An ideal approach to measure semantic quality would involve real-time oph-
thalmologist feedback on each generated sample, but this is infeasible due to
high costs. Inspired by prior research [16,35] that utilized pretrained classifiers
for model optimization, we propose using a group of pretrained classifiers as di-
agnostic agents to evaluate the usefulness of generated images for DR grading.
There are no strict constraints on the architecture or training method of these
classifiers, but diversity intuitively improves performance. For practical imple-
mentation, we employ the LANet [10] family, a SOTA open-source DR grader
for the DDR dataset, as our expert group. Since LANet has been trained on
multiple CNN backbones, including VGG, DenseNet, and InceptionNet, it offers
sufficient diversity to serve as a robust evaluation. We select the k models with
top performance as scorers to measure the semantic quality of generated images.

With pretrained classifiers {gi}ki=1 as scorers, we compute the semantic score
for each synthetic sample xsync based on its prompt-specified category j. Specif-
ically, we extract the logits predicted by each classifier {logiti}ki=1 ∈ R5×1, apply
softmax normalization, compute the element-wise average and then take the jth
element: scorej = 1

k

∑k
i=1 softmax(logiti)[j]. We then remove synthetic samples

outside the range [0.7, 0.9] which was decided by a grid search. This threshold
matches our expectation as low-scoring samples degrade classifier performance,
while perfect-scoring samples provide little new information for training.

3.3 Finetuning diffusion model with explicit class condition

In this section, we further explore method refines diffusion models to generate
samples with high semantic quality by incorporating explicit class condition
(ECC). Prior approaches [16,35] integrate classification loss into the optimization
objective. However, this approach is not suitable for our method. The reason is
that we adopt the latent diffusion framework, generating images as VAE latents,
for which no existing DR classifier has been trained. Thus in this paper, we
implement explicit class condition through an iterative self-supervised filtering
and finetuning process inspired by DreamSync [26].

As illustrated as the gray dash arrows in Fig. 1, starting from a text prompt
T specifying class, the model fθ generates a set of images {x(k)

sync}Nk=1, where
N = 256 is empirically determined for stable finetuning. Then we utilize same
evaluation strategy and filter threshold detailed in Section 3.2 to select samples
with high semantic quality denoted as {x∗

sync}. High-quality image-text pairs



6 H. Zhang et al.

(T, x∗
sync) are then iteratively used to finetune the diffusion model via a LoRA-

based optimization strategy for computational efficiency. The refinement process
is governed by minimizing additional reconstruction loss over the filtered top
score samples (green arrow), leading to the final optimization objective:

Ltotal = MSEDDR + αMSEprior + βMSEECC

where MSEDDR and MSEprior ensure stable finetuning on limited fundus data
as detailed in Section 3.1, while MSEECC introduces an explicit class condition
to enhance semantic quality. The loss weights α and β balance the contributions
of these terms for optimal performance.

4 Experimental Result

4.1 Implement details

Datasets This paper aims to improve the balanced accuracy of CNN classifiers
on the DDR dataset [13], while using EyePACS and APTOS datasets for prior
loss computation. The DDR dataset contains 12,522 fundus images for five-class
DR grading, split into 6,260 training, 2,503 validation, and 3,759 test images,
with an imbalanced class distribution. For example in the training set, samples
in DR-0 to DR-4 stages are 3133, 315, 2238, 118, and 456, respectively. To
address this, we use data synthesis in the training set and evaluate performance
using balanced accuracy to avoid class distribution bias in the test set. In detail,
synthetic samples were added only to the mild and severe DR classes. At the
4K setting in Fig. 2(a), 2K samples were added to each, resulting in a train set
of 3133, 2315, 2238, 2118, 456. For validation, we randomly selected 47 samples
from each class in the official valid split to ensure balance.

Implementation We implement the diffusion model and classifiers using Py-
Torch. The diffusion model is based on Stable Diffusion 1.5 (SD1.5) from Hugging
Face Diffusers library, finetuned on 512×512 fundus images with LoRA (rank
8). To enhance data diversity, we apply center cropping and random flipping,
using effective batch size 96. The model is trained with a constant learning rate
of 1e-5, initializing β=0 for the first 500 steps and setting β=0.001 thereafter.
α is set as 0.1. For classifier training, we follow the pipeline from [10], training
Inception-v3, DenseNet-121, and VGG-16 for 300, 200, and 100 epochs, respec-
tively, with a batch size of 32 and a learning rate of 1e-3 using polynomial decay
(p=9). The best-performing model on validation is selected for final evaluation.

4.2 Experimental Results

To show the effectiveness of our proposed diffusion model training and data
filtering strategy, we conduct experiment based on SOTA DR grader, LANet [10],
on DDR dataset. We implement their classifiers based on author’s open-source
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Table 1. Classification performance of LANet with different backbones using the pro-
posed data synthesis on the DDR dataset. “B. Acc” is short for balanced accuracy [5].
Models marked with * are trained by the LANet authors. Basic DM and ECC DM
refer to diffusion models trained as described in Sections 3.1 and 3.3, respectively. w/
filter indicates the application of the filtering strategy detailed in Section 3.2. We keep
the total number of synthetic training samples same before and after filtering, achieved
through random selection.

Backbone VGG-16 Inception-v3 DenseNet-121
Metric B. Acc Kappa Acc B. Acc Kappa Acc B. Acc Kappa Acc

LANet* 65.92 86.41 83.83 67.80 85.92 83.88 64.24 84.20 82.50
LANet 66.84 85.06 83.67 65.97 84.47 81.70 62.14 84.26 83.08
+ oversampling 68.78 82.47 79.06 66.46 84.55 81.28 64.79 83.66 80.69
+ basic DM w/o filter 71.37 81.94 76.99 69.01 82.53 78.27 67.19 83.35 78.8
+ basic DM w/ filter 73.79 84.24 77.92 71.33 84.18 79.49 69.47 82.32 76.59
+ ECC DM w/o filter 74.20 81.38 75.02 71.95 83.76 76.67 70.22 83.76 79.76
+ ECC DM w/ filter 73.82 82.58 76.80 70.38 84.74 77.57 69.20 83.82 79.28

codes and report performance of both our implementation and author’s models
in Table 1. We also include the performance of oversampling (based on normed
inverse class frequency) as baseline solution for data imbalance. We focus on
balanced accuracy (B. Acc) but we also provide unbalanced accuracy (Acc) and
quadratic weighted kappa [10] for reference.

Main results. Table 1 demonstrates that oversampling enhances balanced
accuracy to some extent, with a more significant improvement when using dif-
fusion model-generated data. Among the synthetic data settings, the basic dif-
fusion model performs the worst, underscoring the effectiveness of our proposed
semantic quality-based evaluation and filtering strategy. Furthermore, finetuning
the diffusion model with explicit class condition enables the generation of high-
semantic-quality samples, achieving similar accuracy comparable to the basic
model with filtering. This validates the efficacy of our ECC finetuning strat-
egy. An interesting observation is that with ECC, synthetic data without fil-
tering slightly outperforms the filtered version. This suggests that a reasonable
number of samples with scores outside the range [0.7, 0.9] may contribute to
classifier learning. Thus, an implicit semantic quality control via the diffusion
model appears more beneficial than a hard threshold-based filtering approach.
The confusion matrix in Fig. 2 (b) illustrates how synthetic data improves bal-
anced accuracy: While this comes at the cost of reduced accuracy for moderate
DR cases, the classifier exhibits improved recognition of mild and severe DR,
maximizing values along the main diagonal.

Performance v.s. data amount. Fig. 2 (a) further examines the impact of
synthetic data volume on model performance. Notably, i) while balanced accu-
racy improves, overall accuracy declines—a trend consistent with Table 1. This
phenomenon aligns with expectations: the model initially learns from an imbal-
anced dataset, yielding high overall accuracy on a similarly skewed test set. In-
corporating synthetic data for underrepresented classes mitigates this imbalance,
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Fig. 3. Visual inspection of synthetic samples.

enhancing balanced accuracy at the cost of reduced overall accuracy due to the
diminishing advantage of the imbalanced class distribution. When the dataset
becomes fully balanced, the two accuracy curves ultimately converge, producing
an unbiased classifier. ii) The initial simultaneous increase in all three perfor-
mance metrics suggests that introducing a limited amount of synthetic data into
underrepresented classes does not immediately disrupt the imbalance prior of
training dataset. Instead, it expands the training set’s diversity while preserving
key statistical properties, leading gain across all three measures. However, iii) the
benefits of synthetic data diminish over time, likely due to the limited diversity
of generated samples. Since real data remains fundamental to generalization, an
excessive amount of synthetic data may dilute its impact, constraining further
improvement.

Visual inspection. Fig. 3 presents synthetic DDR samples generated by our
diffusion model. In the first row, the samples on the left achieve a higher semantic
score and display microaneurysms—key diagnostic features of mild DR. In con-
trast, the samples on the right either lack visible microaneurysms or suffer from
poor image quality, making disease assessment challenging. Similarly, in the sec-
ond row, the left-side samples demonstrate characteristic features of severe non-
proliferative DR, including diffuse retinal hemorrhages, microaneurysms across
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all four quadrants, and venous beading in at least two quadrants. In comparison,
the right-side samples are more indicative of proliferative DR, as they show signs
of neovascularization with intra- or subretinal hemorrhage.

5 Conclusion

In this study, we employed a diffusion model for fundus image synthesis to mit-
igate training data imbalance. We adopted the DreamBooth framework and
introduced a semantic quality metric based on an ensemble of pretrained classi-
fiers. Using both for diffusion model training, we ensured high-semantic-quality
fundus image generation within the DDR domain. Experimental results confirm
that our approach improves balanced accuracy in SOTA classifiers, enhancing
the practical application of automated DR diagnosis. Future work will explore
dataset expansion with synthetic data and iterative optimization of the ECC
diffusion model and classifier group used for semantic quality assessment. We
will also investigate diversity-aware sampling together with semantic quality.
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