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Abstract. Echocardiography is a critical imaging technique for diag-
nosing cardiac diseases, requiring accurate view recognition to support
clinical analysis. Despite advancements in deep learning for automat-
ing this task, existing models face two major limitations: they support
only a limited number of cardiac views, insufficient for complex cardiac
diseases, and they inadequately handle out-of-distribution (OOD) sam-
ples, often misclassifying them into generic categories. To address these
issues, we present EchoViewCLIP, a novel framework for fine-grained
cardiac view recognition and OOD detection. Built on our collected
large-scale dataset annotated with 38 standard views and OOD data,
EchoViewCLIP integrates a Temporal-informed Multi-Instance Learn-
ing (TML) module to preserve temporal information and identify key
frames, along with a Negation Semantic-Enhanced (NSE) Detector to
effectively reject OOD views. Additionally, we introduce a quality as-
sessment branch to evaluate the quality of detected in-distribution (ID)
views, enhancing the reliability of echocardiographic analysis. Our model
achieves 96.1% accuracy across 38 view recognition tasks. The code is
available at https://github.com/xmed-lab/EchoViewCLIP.
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1 Introduction

Echocardiography is a widely used cardiac imaging technique [2,25], provid-
ing key diagnostic evidence and guiding clinical decision-making [1,4,22,26].
Accurate cardiac diagnosis requires pathological findings from multiple cardic
views [21,24,28]. Therefore, precise view classification in echocardiography is cru-
cial for enabling downstream analysis models to incorporate critical view-specific
information, ensuring clinically meaningful and aligned interpretations.

Recent deep learning-based methods for echocardiography view classification
can be categorized into image-based and video-based approaches. Image-based

https://github.com/xmed-lab/EchoViewCLIP
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Fig. 1. An example demonstrating the quality control process. Raw data: Original
data collected by echocardiogists. OOD Videos: Videos that do not belong to any of
the defined cardiac view classes. Low Quality Videos: Videos that fall within the
defined view categories but exhibit insufficient quality to support reliable diagnosis.
Both OOD and low-quality videos should be discarded. High Quality Videos with
View Labels: The final high-quality data obtained through the quality control process
readily support accurate and reliable echocardiographic analysis.

models treat video frames independently, fine-tuning pre-trained classifiers for
view prediction [10,12,16,27,6,7,11,15]. However, they struggle with noisy or am-
biguous frames, particularly for views that views require spatio-temporal anal-
ysis across the entire video. This frame-level dependency limits their robustness
and applicability to dynamic views. Video-based methods [18,20,14] could an-
alyze full input videos to capture temporal relationships, which is better than
image-based methods. Among video-based models, ViFi-CLIP [14] achieves ad-
vanced video classification performance by averaging pooled frame-level features
and finetuned on contrastive language-image pre-training model (CLIP) [13].
However, its simplistic aggregation struggles to effectively distinguish similar
inter-class features and varying intra-class characteristics in echocardiography
videos, leading to suboptimal accuracy in multi-view recognition. Despite pre-
vious advancements, existing view classification models still encounter two key
limitations. First, they support only a limited number of view classes, with most
models restricted to a maximum of 23 standardized categories [27]. Compre-
hensive diagnostic assessments, particularly in complex cardiac conditions, ne-
cessitate the analysis of over 30 standardized views to adequately capture sub-
tle anatomical variations [8]. Second, existing models struggle to handle OOD
videos that deviate from predefined view categories (see Fig. 1). These models
often misclassify them into arbitrary classes or assign them to a generic "Others"
class. This introduces noise during training and undermines model reliability in
real-world scenarios, where non-standard views are frequently encountered.

Our primary objective is to develop a high-performance view recognition
model that supports a comprehensive range of cardiac view categories and en-
ables quality review in real-world clinical settings as shown in Fig. 1. To this
end, we first construct a large-scale echocardiography dataset annotated with 38
standard cardiac views and diverse OOD instances, meticulously labeled by nine
experienced cardiologists. This dataset serves as a clinically grounded and bench-
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mark for training and evaluating view classification models in alignment with
practical clinical scenarios. Building upon this dataset, we introduce EchoView-
CLIP, a novel CLIP-based framework that leverages both positive and negative
semantics to perform 38-view ID recognition and OOD detection. The visual
encoder comprises two visual experts to learn positive and negative semantics
independently, each integrated with TML to preserve temporal dynamics and
identify key frames critical for precise view classification. Leveraging negation
semantics, we further develop the NSE OOD Detector, which enables the model
to reject OOD views rather than misclassify them into ID categories. Moreover,
the integration of TML and NSE enhances the model’s ability to perform ac-
curate quality assessments on ID samples that belong to predefined views. This
emergent capability facilitates more robust echocardiography data standardiza-
tion, positioning EchoViewCLIP as a comprehensive tool for advancing clinical
workflows in cardiac imaging. We summarize our contributions as follows:

– For accurate view classification, we propose the TML module, which pre-
serves temporal dynamics and selects key frames for precise recognition. To
ensure robust OOD detection, we develop the NSE module, which uses se-
mantic contrast to reject OOD samples rather than misclassifying them.

– We extend EchoViewCLIP to include for ID quality assessment, further en-
hancing its application for comprehensive quality screening.

– Experimental results on our large dataset demonstrate EchoViewCLIP’s
SOTA performance in both standard view classification and OOD detection.

2 Methodology

Overview. EchoViewCLIP contains three core components, namely Standard
View Classifier (SVC) with TML, NSE OOD Detector, and Quality Reviewer
(QR), as illustrated in Fig. 2. Given an echocardiography video as input, the SVC
and NSE jointly determine the video’s domain attribute and view category. If the
input belongs to the ID category, the QR integrates both positive and negative
semantics to assess the video’s quality.

2.1 Standard View Classifier with TML

The main goal of SVC is accurately classifying input echocardiography videos
into the corresponding classes. We introduce temporal-informed multi-instance
learning (TML) to preserve the temporal dependency among video frames while
learning frame-specific feature weights. TML treats multiple frames as a set,
allowing the model to focus on key frames crucial for view recognition. Specif-
ically, we input an ultrasound video x ∈ XT×3×224×224 of T frames through a
visual encoder (Vshare and Vpos in Fig. 2) to obtain the frame-wise visual repre-
sentations hpos = {h1, h2, ..., hT }. Then, the visual representations are used to
calculate the attention weights wt for each frame ht:

wt =
exp{q⊤ tanh(Mh⊤

t )}∑T
j=1 exp{q⊤ tanh(Mh⊤

j )}
∈ [0, 1], (1)
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Fig. 2. Overall framework of our EchoViewCLIP. Given an input video, our model
generates three outputs. First, by calculating simpos and simneg, the model determines
whether the input is an OOD sample based on the threshold τ . Then, if the input is
an ID sample, the model predicts its corresponding cardiac view category according to
simpos. Finally, based on the predicted view category, our model further evaluates the
sample’s quality label using our quality assessment branch.

where q and M are learnable parameters that determine the importance of each
frame in the context of the entire video. The final video-level representation
fpos is then derived by combining the weighted frame-level features kpos and the
overall temporal semantic features tpos, as follows:

fpos = P (C(kpos, tpos)), s.t. kpos =
T∑

t=1

wtht, tpos =
1

T

T∑
t=1

ht, (2)

where C(·) means concatenation and P (·) is a linear projector.
We treat the view labels as structured text following ViFi-CLIP, and obtain

the text representation set Tpos = {t1pos, t2pos, . . . , tNpos}, where N is the number of
standard views. The output is made by calculating the cosine similarity between
the video-level representation fpos and the text representation tlabel as follows:

ŷ = argmax
i

sim(fpos, t
i
pos), s.t. sim(fpos, t

i
pos) =

fpos · tipos
∥fpos∥∥tipos∥

, (3)

where ŷ is the predicted view class label, ∥ · ∥ denotes the L2 normalization.
During training, yi is the ground truth label, ŷi is the predicted label. The
model is optimized using the soft cross-entropy loss as follows:

LSCE = −
N∑
i=1

C∑
c=1

yi,c log(ŷi,c). (4)
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2.2 Negation Semantic-Enhanced OOD Detector

To effectively identify and reject OOD echocardiography videos, we further intro-
duce the Negation Semantic-Enhanced (NSE) OOD Detector in our EchoView-
CLIP. In NSE, we introduces another distinct visual expert Vneg for learning neg-
ative semantics, while sharing other parameters with the positive visual encoder
Vshare. This design prevents the negative expert from learning a distribution too
similar to the positive encoder. By separating expert representations and inte-
grating the same TML as positive encoder, our framework enhances robustness
and more effectively filters out OOD samples.

Specifically, for each standard view class cls, we construct negative sen-
tences ‘This ultrasound vdieo does not show an {cls}’ and feed them into
the negative text encoder to obtain the negative text representation Tneg =
{t1neg, t2neg, . . . , tNneg}. Then we obtain the frame features hneg from our negative
visual encoder Vneg(·). Next, we calculate the cosine similarity between the visual
features from negative expert hneg and the negative text representation Tneg to
obtain a negative score for each view class, which is similar to the SVC branch.
During training, we freeze the SVC branch obtained from training stage 1 (see
Sec. 2.1) and optimize the Vneg, TMLneg and Eneg using the soft cross-entropy
loss LSCE and text semantic-oppposite loss LTSO [19] as follows:

LTSO =
1

N

(
2−

N∑
i=1

∥Tpos(i) − Tneg(i)∥2

)
, (5)

where LTSO encourages the positive and negative text features to be well-
separated in the feature space. During inference, we introduce a threshold-based
rejection mechanism that leverages both positive and negative similarity scores
(Sim(c)

pos and Sim
(c)
neg, respectively) for each class c. Specifically, OOD samples

are rejected if the sum of class-wise scores falls below a predefined threshold:

N∑
c=1

(
Sim(c)

pos × (1− Sim(c)
neg)

)
< τ, (6)

where N is the total number of view classes, and τ is a threshold with a default
setting of 0.5 that can be adjusted as needed.

2.3 Quality Review for In-Distribution Videos

Some ID videos may still be of low quality due to factors such as pulmonary
air interference, rib shadowing, or insufficient coupling agent, thereby cannot
provide evidence to support diagnosis. To further screen out these samples to
improve the data quality, we leverage the positive and negative visual seman-
tics to assist in quality control within the quality review branch. Specifically,
we introduce a new visual expert Vqc, which then integrates the positive and
negative visual semantics through another TML module. The combined visual
representations are then passed through a classifier to assess the image quality.
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Table 1. Comparison of ours with previous methods on both standard view and OOD
recognition. ‘†’ refers to the image input methods and others are video input methods.

Model Standard View Recognition OOD Recognition

Acc.↑ Prec.↑ Rec.↑ F1↑ AUROC↑ FPR95↓ Acc.↑

ResNet50† [3] 0.882 0.837 0.837 0.834 0.956 0.054 0.843
EfficientNetV2† [17] 0.888 0.834 0.840 0.835 0.955 0.060 0.852
ConvNeXt† [23] 0.896 0.845 0.847 0.843 0.976 0.046 0.861
VideoMAE v2 [20] 0.910 0.879 0.893 0.883 0.981 0.021 0.897
EchoPrime [18] 0.903 0.900 0.903 0.900 0.998 0.006 0.903
ViFi-CLIP [14] 0.948 0.927 0.930 0.927 0.986 0.009 0.945

Ours 0.968 0.958 0.958 0.957 0.993 0.002 0.961

Table 2. Ablation Study. MIL denotes original attention-based multi-instance learning
module. TML means our temporal multi-instance learning learning module, NSE means
the negation semantic-enhanced branch.

Settings MIL TML NSE Standard View Recognition OOD Recognition

Acc.↑ Prec.↑ Rec.↑ F1↑ AUROC↑ FPR95↓ Acc.↑

Baseline % % % 0.948 0.927 0.930 0.927 0.986 0.009 0.945
a ! % % 0.955 0.948 0.945 0.946 0.985 0.007 0.948
b ! ! % 0.968 0.958 0.958 0.957 0.988 0.006 0.949

Ours ! ! ! 0.968 0.958 0.958 0.957 0.993 0.002 0.961

The output quality label is one of: good, middle, or poor. This quality review
branch enhances the model’s robustness by not only identifying OOD samples
but also filtering out low-quality ID samples.

3 Experiments

Dataset. We collect 20617 echocardiography videos sourcing from Guangdong
Provincial People’s Hospital in China and include labels for 38 standard cardiac
view classes [8], as well as the OOD category, meticulously annotated by a panel
of nine experienced cardiologists. We treat videos of the 38 standard views as ID
data while the rest as OOD data. This results in 15292, 4625, 200, and 200 videos
for ID training and testing, OOD training and testing, respectively. To evaluate
quality control performance, a subset of the ID videos was further annotated
by two independent experts. Quality labels were assigned across three levels:
good (standard quality excellent for diagnosis), middle (intermediate quality
yet diagnostically acceptable), and poor (low quality hindering diagnosis). This
quality control subset consists of 7410 training videos and 1881 testing videos.
Implementation Details. For image-based methods [3,17,23], we uniformly
sample 16 frames from each video, assigning each frame to the corresponding
video-level label. The model was trained with a batch size of 128 for 100 epochs.
During testing, we averaged the predictions from the 16 frames to obtain the
final video-level prediction. For video-based methods, each video is sampled to
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Fig. 3. ROC curves comparing the performance of direct classification vs. utilizing our
view recognition features on CAMUS dataset.

16 frames with 1 FPS to ensure fairness. We tune EchoPrime [18] and ViFi-
CLIP [14] for 30 epochs, and VideoMAEv2 [20] for 100 epoch to ensure effective
adaptation. Our model was implemented using PyTorch 1.13.0 and trained on 4
NVIDIA RTX 3090 GPUs. We used the AdamW optimizer [9] with a learning
rate of 2.2×10−5 and a total of 30 epochs with a batch size of 4 per GPU. For
ID quality control validation, we trained 20 epoches with the same batch size.
Standard View Recognition Performance. We compared ours performance
with a broad set of backbones and SOTA methods, including image-based meth-
ods (ResNet-50 [3], EfficientNetV2 [17], ConvNeXt [23]), and video-based meth-
ods (EchoPrime [18], ViFI-CLIP [14]). As shown in Table 1, our model achieves
superior performance on standard view recognition, attaining an accuracy of
96.8% and an F1 score of 0.957, outperforming all competing methods. Notably,
our model surpasses the strongest baseline, ViFi-CLIP, by a notable 2% improve-
ment in accuracy and a 3% improvement in F1 score. For OOD detection, we
follow prior work by providing additional OOD training data to models that lack
inherent OOD detection capabilities. In contrast, our model is able to perform
OOD detection directly by using NSE, without the need for such supplementary
data. (For fair comparison, results for our method with additional OOD train-
ing data are reported in Table 2.) We evaluated performance using the following
metrics: the average AUROC, FPR95 and accuracy for both ID and OOD cat-
egories in the overall test dataset. Our model achieved an exceptional AUROC
of 0.993 and an FPR95 of only 0.002, demonstrating robust separation between
ID and OOD samples with minimal false positives. These results meet the cur-
rent diagnostic standard as confirmed by experienced clinicians, highlighting the
clinical reliability and effectiveness of our model.
Ablation Study. We conducted ablative studies to validate the effectiveness of
our proposed framework. The results are detailed in Table 2. Setting a demon-
strates that enabling the model to focus on key frames within the input videos by
using multi-instance learning module (MIL) [5] significantly improves echocar-
diography video recognition, boosting F1 from 0.927 to 0.946. Setting b shows
that incorporating TML further enhances accuracy by from 0.955 to 0.968 and
F1 from 0.946 to 0.957. This may because weighting video frames directly will
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Fig. 4. Qualitative results demonstrate the superiority of our method over the baseline.
For the easily confused Parasternal Papillary Muscle Short Axis 2D and Parasternal
Mitral Valve Short Axis categories, our TML module effectively selects key frames
to highlight distinguishing features, whereas the baseline model averages all frames,
making it difficult to differentiate these closely related views.

confuse temporal information which is helpful for distinguishing between sim-
ilar classes. Finally, by introducing the NSE branch, the model’s ability to
differentiate OOD samples is improved while maintaining high accuracy for ID
classification. This increases AUROC from 0.988 to 0.993 and significantly re-
duces FPR95, demonstrating the branch’s effectiveness.
ID Quality Control Analysis. Our model’s ability to identify both positive
and negative semantics motivated us to further investigate its potential for as-
sessing the quality of ID views. To this end, we trained the model on our in-house
dataset to incorporate quality control capabilities. On the test dataset, the model
achieved an accuracy of 82% in quality assessment. Furthermore, to address po-
tential subjectivity in manual quality scoring on in-house data and verify the
effectiveness of our model, we also evaluated the ROC curves on the public CA-
MUS quality classification dataset. As shown in Fig. 3, both CAMUS studies are
based on our view classification model. The difference is whether view recognition
features from our ID and OOD experts are used during QC expert fine-tuning.
This aims to validate that accurate view classification can improve quality con-
trol. The results demonstrate that leveraging our high-performance model and
its feature distribution improves the effectiveness of the ID view quality control
task, particularly for distinguishing good (0.03↑) and poor (0.02↑) quality cases.
Case study. We present a qualitative example to illustrate the superiority of
our method compared to the SOTA baseline ViFi-CLIP. As depicted in Fig. 4,
we consider two visually confused categories, Parasternal Mitral Valve Short
Axis and Parasternal Papillary Muscle Short Axis 2D. Our TML module effec-
tively identifies key frames, allowing the model to focus on distinctive features
that differentiate these challenging views. In contrast, the baseline model aver-
ages all frames indiscriminately, leading to difficulties in distinguishing between
these closely related categories. Specifically, the baseline method misclassifies
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the Parasternal Mitral Valve Short Axis as Parasternal Papillary Muscle Short
Axis 2D with an 83.8% confidence score, whereas our method correctly classifies
it with a 68.8% confidence score. This result highlights our model’s enhanced
discriminative capability, reducing confusion between similar view classes.

4 Conclusion

In this paper, we have developed EchoViewCLIP, a novel framework that en-
hances cardiac view recognition through a negation semantic-enhanced approach
and temporal-informed multi-instance learning. This framework not only im-
proves the accuracy of fine-grained view classification across 38 standard views
but also effectively rejects OOD views, thereby enhancing clinical applicability.
Additionally, our model introduces an ID quality assessment branch to ensure
reliable echocardiographic analysis.

Acknowledgments. This work was supported by a research grant from the Joint Re-
search Scheme (JRS) under the National Natural Science Foundation of China (NSFC)
and the Research Grants Council (RGC) of Hong Kong (Project No. N_HKUST654/24),
as well as a grant from the National Natural Science Foundation of China (Grant No.
62306254).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Al-Khatib, S.M., Stevenson, W.G., Ackerman, M.J., Bryant, W.J., Callans, D.J.,
Curtis, A.B., Deal, B.J., Dickfeld, T., Field, M.E., Fonarow, G.C., et al.: 2017
aha/acc/hrs guideline for management of patients with ventricular arrhythmias
and the prevention of sudden cardiac death: a report of the american college of
cardiology/american heart association task force on clinical practice guidelines and
the heart rhythm society. Journal of the American College of Cardiology 72(14),
e91–e220 (2018)

2. Christensen, M., Vukadinovic, M., Yuan, N., Ouyang, D.: Vision–language founda-
tion model for echocardiogram interpretation. Nature Medicine 30(5), 1481–1488
(2024)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

4. Heidenreich, P.A., Bozkurt, B., Aguilar, D., Allen, L.A., Byun, J.J., Colvin, M.M.,
Deswal, A., Drazner, M.H., Dunlay, S.M., Evers, L.R., et al.: 2022 aha/acc/hfsa
guideline for the management of heart failure: a report of the american college of
cardiology/american heart association joint committee on clinical practice guide-
lines. Journal of the American College of Cardiology 79(17), e263–e421 (2022)

5. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning.
In: International conference on machine learning. pp. 2127–2136. PMLR (2018)



10 S. Song et al.

6. Khamis, H., Zurakhov, G., Azar, V., Raz, A., Friedman, Z., Adam, D.: Automatic
apical view classification of echocardiograms using a discriminative learning dic-
tionary. Medical image analysis 36, 15–21 (2017)

7. Knackstedt, C., Bekkers, S.C., Schummers, G., Schreckenberg, M., Muraru, D.,
Badano, L.P., Franke, A., Bavishi, C., Omar, A.M.S., Sengupta, P.P.: Fully auto-
mated versus standard tracking of left ventricular ejection fraction and longitudinal
strain: the fast-efs multicenter study. Journal of the American College of Cardiol-
ogy 66(13), 1456–1466 (2015)

8. Lang, R.M., Badano, L.P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L.,
Flachskampf, F.A., Foster, E., Goldstein, S.A., Kuznetsova, T., et al.: Recom-
mendations for cardiac chamber quantification by echocardiography in adults: an
update from the american society of echocardiography and the european associ-
ation of cardiovascular imaging. European Heart Journal-Cardiovascular Imaging
16(3), 233–271 (2015)

9. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International
Conference on Learning Representations (2017)

10. Madani, A., Arnaout, R., Mofrad, M., Arnaout, R.: Fast and accurate view clas-
sification of echocardiograms using deep learning. NPJ digital medicine 1(1), 6
(2018)

11. Narula, S., Shameer, K., Salem Omar, A.M., Dudley, J.T., Sengupta, P.P.:
Machine-learning algorithms to automate morphological and functional assess-
ments in 2d echocardiography. Journal of the American College of Cardiology
68(21), 2287–2295 (2016)

12. Naser, J.A., Lee, E., Pislaru, S.V., Tsaban, G., Malins, J.G., Jackson, J.I.,
Anisuzzaman, D., Rostami, B., Lopez-Jimenez, F., Friedman, P.A., et al.: Arti-
ficial intelligence-based classification of echocardiographic views. European Heart
Journal-Digital Health 5(3), 260–269 (2024)

13. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International conference on machine learning. pp.
8748–8763. PmLR (2021)

14. Rasheed, H., Khattak, M.U., Maaz, M., Khan, S., Khan, F.S.: Fine-tuned clip
models are efficient video learners. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. pp. 6545–6554 (2023)

15. Sengupta, P.P., Huang, Y.M., Bansal, M., Ashrafi, A., Fisher, M., Shameer, K.,
Gall, W., Dudley, J.T.: Cognitive machine-learning algorithm for cardiac imaging:
a pilot study for differentiating constrictive pericarditis from restrictive cardiomy-
opathy. Circulation: Cardiovascular Imaging 9(6), e004330 (2016)

16. Steffner, K.R., Christensen, M., Gill, G., Bowdish, M., Rhee, J., Kumaresan, A.,
He, B., Zou, J., Ouyang, D.: Deep learning for transesophageal echocardiography
view classification. Scientific Reports 14(1), 11 (2024)

17. Tan, M., Le, Q.: Efficientnetv2: Smaller models and faster training. In: Interna-
tional conference on machine learning. pp. 10096–10106. PMLR (2021)

18. Vukadinovic, M., Tang, X., Yuan, N., Cheng, P., Li, D., Cheng, S., He, B., Ouyang,
D.: Echoprime: A multi-video view-informed vision-language model for comprehen-
sive echocardiography interpretation. arXiv preprint arXiv:2410.09704 (2024)

19. Wang, H., Li, Y., Yao, H., Li, X.: Clipn for zero-shot ood detection: Teaching clip to
say no. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 1802–1812 (2023)



EchoViewCLIP 11

20. Wang, L., Huang, B., Zhao, Z., Tong, Z., He, Y., Wang, Y., Wang, Y., Qiao, Y.:
Videomae v2: Scaling video masked autoencoders with dual masking. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 14549–14560 (June 2023)

21. Wharton, G., Steeds, R., Allen, J., Phillips, H., Jones, R., Kanagala, P., Lloyd, G.,
Masani, N., Mathew, T., Oxborough, D., et al.: A minimum dataset for a standard
adult transthoracic echocardiogram: a guideline protocol from the british society
of echocardiography. Echo Research & Practice 2(1), G9–G24 (2015)

22. Wilcox, J.E., Fang, J.C., Margulies, K.B., Mann, D.L.: Heart failure with recov-
ered left ventricular ejection fraction: Jacc scientific expert panel. Journal of the
American College of Cardiology 76(6), 719–734 (2020)

23. Woo, S., Debnath, S., Hu, R., Chen, X., Liu, Z., Kweon, I.S., Xie, S.: Convnext v2:
Co-designing and scaling convnets with masked autoencoders. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. pp. 16133–
16142 (2023)

24. Yang, J., Huang, T., Ding, S., Xu, X., Zhao, Q., Jiang, Y., Guo, J., Pu, B.,
Zheng, J., Zhang, C., et al.: Ai-enabled accurate non-invasive assessment of
pulmonary hypertension progression via multi-modal echocardiography. arXiv
preprint arXiv:2505.07347 (2025)

25. Yang, J., Lin, Y., Pu, B., Guo, J., Xu, X., Li, X.: Cardiacnet: Learning to recon-
struct abnormalities for cardiac disease assessment from echocardiogram videos.
In: European Conference on Computer Vision. pp. 293–311. Springer (2024)

26. Yang, J., Lin, Y., Pu, B., Li, X.: Bidirectional recurrence for cardiac motion track-
ing with gaussian process latent coding. Advances in Neural Information Processing
Systems 37, 34800–34823 (2024)

27. Zhang, J., Gajjala, S., Agrawal, P., Tison, G.H., Hallock, L.A., Beussink-Nelson,
L., Lassen, M.H., Fan, E., Aras, M.A., Jordan, C., et al.: Fully automated echocar-
diogram interpretation in clinical practice: feasibility and diagnostic accuracy. Cir-
culation 138(16), 1623–1635 (2018)

28. Zheng, Z., Yang, J., Ding, X., Xu, X., Li, X.: Gl-fusion: Global-local fusion net-
work for multi-view echocardiogram video segmentation. In: International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention. pp. 78–88.
Springer (2023)


	EchoViewCLIP: Advancing Video Quality Control through High-performance View Recognition of Echocardiography

