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Abstract. Digital pathology has seen the advent of a wealth of founda-
tional models (FMs), yet to date their performance on cell phenotyping
has not been benchmarked in a unified manner. We therefore propose
PathoCellBench: A comprehensive benchmark for cell phenotyping on
Hematoxylin and Eosin (H&E) stained histopathology images. We pro-
vide both PathoCell , a new H&E dataset featuring 14 cell types identified
via multiplexed imaging, and ready-to-use fine-tuning and benchmark-
ing code that allows the systematic evaluation of multiple prominent
pathology FMs in terms of dense cell phenotype predictions in a range of
generalization scenarios. We perform extensive benchmarking of existing
FMs, providing insights into their generalization behavior under techni-
cal vs. medical domain shifts. Furthermore, while FMs achieve macro F1
scores > 0.70 on previously established benchmarks such as Lizard and
PanNuke, on PathoCell , we observe scores as low as 0.20. This indicates
a much more challenging task not captured by previous benchmarks, es-
tablishing PathoCell as a prime asset for future benchmarking of FMs
and supervised models alike. Code and data are available on GitHub.
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1 Introduction

Automated cell type classification in Hematoxylin and Eosin (H&E) stained
histopathology images is a crucial task in computational pathology, with ap-
plications in disease diagnosis, prognosis, and treatment planning [10]. Recent
advances in large-scale pre-trained foundation models (FMs) have enabled the
development of general-purpose feature extractors demonstrating strong perfor-
mance across various pathology tasks [2,29,6,25,24]. However, it remains unclear
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Fig. 1. Overview of the PathoCell dataset and FM benchmarking: (a) Example image
from PathoCell , a zoomed-in visualization of a tile and its segmentation mask. Along
the pixel-wise panoptic annotations, information such as multiplexed immunofluores-
cence stainings, pixel-wise labels, or patient data are provided. (b) Illustration of the
benchmarking pipeline for evaluation of cell phenotyping capabilities of FMs.

to what extent these models outperform supervised baselines for cell type pre-
diction [26]. Prior evaluations have been limited, either focusing on proprietary
datasets with restricted access [4] or constrained to a single dataset [2]. There-
fore, a systematic benchmark across multiple datasets is needed to determine
whether pathology FMs provide an advantage over supervised baselines.

Most existing benchmarking efforts in digital pathology focus on slide- and
patch-level prediction tasks [16], whereas datasets for cell phenotyping or seg-
mentation [9,8] are already approaching performance saturation. Furthermore,
domain shifts in prior cell-level datasets have been limited to technical fac-
tors such as differences in sample preparation, staining protocols, and scanner
types [9]. However, tumor and molecular subtypes, as well as different stages of
disease, may contribute to a medical domain shift that is currently not captured
by existing benchmarks.

To bridge this gap, we (1) publish PathoCell , to our knowledge, the largest
publicly available dataset for H&E-based cell phenotyping with fine-grained cell
type annotations (Fig. 1a), encompassing 14 distinct cell types and 88 million
individual cells, much larger than all previous datasets (e.g. Lizard [9]: 6 cell
types and 495k cells). Our dataset introduces multiple medical domain shifts,
capturing variations in tumor subtypes and cancer staging.

(2) We benchmark seven pathology foundation models [2,3,6,24,25,29] and
HoVer-NeXt [1], a strong supervised baseline, on the PathoCell dataset with
three different dataset splits to test generalization performance under domain
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shifts (Fig. 1b). We further benchmark on PanNuke [8], a pan-cancer dataset,
Lizard [9], a colon carcinoma dataset, and on the synthetic Arctique dataset [7]
to evaluate model generalization to a different domain. (3) We test and compare
linear probing of ViT patch-level features and a UNetR decoder architecture [12]
for dense prediction of cell phenotypes. (4) We publicly release our benchmarking
pipeline along with the dataset, enabling more comprehensive benchmarking of
FMs in pathology.

2 Datasets

We use four datasets to evaluate cell phenotyping performance: two established
H&E datasets, a synthetic dataset and the new PathoCell dataset. In selecting
the datasets, we made sure that none of them was used in the training procedure
of the FMs and that each of them has unique features.

The Lizard dataset [9] is one of the most widely used H&E datasets and
contains colon tissue histology images with panoptic segmentation annotations
generated in a human-in-the-loop fashion. In total, Lizard comprises 291 fields
of view (FoV) with an average size of 1,016×917 pixels and a total of 495,179
individual nuclei: epithelial cells, connective tissue cells, lymphocytes, plasma
cells, neutrophils, and eosinophils. The images in Lizard are acquired by six
different medical centers, which allows a straightforward domain split (Center-
Split) where training and validation samples come from five centers, while the
test set consists of images from a single center (GlaS) [19].

The PanNuke dataset [8] also contains samples from colon tissue which over-
lap with the Lizard dataset but additionally encompasses samples from 18 dif-
ferent tissue types such as breast, liver, or prostate and contains a total of
205,343 nuclei annotations, generated using a human-in-the-loop data annota-
tion pipeline. It consists of 7,901 images, each with a size of 256×256 pixels.
The dataset covers epithelial cells, connective tissue cells, inflammatory cells,
neoplastic and dead cells. Finally, the Arctique dataset [7] is a fully synthetic
dataset, constructed in a procedural fashion utilizing 3D rendering. Arctique
replicates characteristic structures of colon histopathology images and provides
exact labels for all cells. We use the standard training split of Arctique contain-
ing 1450 FoVs of size 512×512 pixel and containing a total of 487,969 cell nuclei
modeled after plasma cells, lymphocytes, eosinophils, fibroblasts, and epithelial
cells.

2.1 The PathoCell Dataset

The image and metadata comprised in PathoCell was originally published with-
out segmentation masks as part of a multiplexed imaging study [21]. The dataset
was acquired using multiplexed CO-Detection by indEXing (CODEX) imaging of
formalin-fixed paraffin-embedded (FFPE) tissue sections from colon carcinoma
patients from the University Hospital of Bern. Tissue samples from 35 patients
were used to construct two tissue microarray (TMA) slides, each containing 70
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distinct samples. These samples were imaged using 56 antibody markers across
multiple cycles of staining, imaging, washing, and re-staining. Cell segmenta-
tion was performed using the CODEX toolkit segmenter on the DRAQ5 nuclear
channel, followed by the calculation of integrated marker expressions. X-shift
clustering [20] was applied to these marker expressions to group cells into phe-
notypic clusters, which were subsequently refined and merged into 28 cell types
through manual expert review.

To create a benchmark for cell type classification in H&E-stained histopathol-
ogy, we collaborated with the authors of the original study to generate high-
quality phenotyping annotations. We constructed dense annotation masks from
previously unpublished segmentation data and cleaned the dataset for bench-
marking H&E-based cell phenotyping. To this end, through a rigorous quality
control process, we visually inspected all segmentation masks and excluded 31
FoVs where significant false merges or false negatives were present in the cell
masks. Additionally, in consultation with the original authors, we merged cell
phenotypes that are deemed too specific to be distinguished in H&E images (e.g.,
CD3+, CD4+, and CD8+ T cells were expert-consolidated into a single T cells
class). The final dataset consists of 109 high-resolution FoVs of size 1440×1920
pixels, with a total of 88 million individual cells and the following 14 distinct
cell types: B cells, macrophages, nerves, dendritic cells (DC), plasma cells, gran-
ulocytes, tumor cells, T cells, stroma, adipocytes, vasculature, smooth muscle,
natural killer (NK) cells, and a residual class named "other cells". The exact
merges are documented on GitHub.

PathoCell has some caveats, the segmentation masks were created via an au-
tomatic segmentation tool, thus their quality is lower than that of other datasets
that were manually or semi-manually segmented. Furthermore, the dataset comes
from a single center, thus technical variations are not reflected and it exclusively
contains images of colon carcinoma tissues.

To enable detailed benchmarking under domain shifts, we provide three differ-
ent dataset splits. Besides (1) Base-Split, a standard (70/15/15) train/validation/
test random split, we also provide: (2) Tumor-Type-Split (63/16/21), where the
training and validation sets contain data from patients with adenocarcinoma,
while the test set consists of patients with mucinous adenocarcinoma, intro-
ducing a variation in tumor cell morphology and microenvironment. Finally, in
(3) Tumor-Stage-Split (64/16/20), training and validation data include patients
with pTNM stage 3 tumors, while the test set is composed of pTNM stage 4
tumors. This diversity in dataset splits allows for an in-depth analysis of how
well FMs generalize across clinically relevant domain shifts, distinguishing this
benchmark from prior datasets that split data on the medical center in which it
was acquired.

3 Pathology Foundation Models

We benchmark seven pathology foundation models, each trained with self-super-
vised (SSL) or contrastive learning on large-scale histopathology datasets. While

https://github.com/nolanlab/CODEX
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all models utilize Vision Transformers (ViTs) as backbones, they differ in archi-
tecture, training strategies, and dataset composition. Most models employ DI-
NOv2 [17] for SSL. Of these, Uni (ViT-L/16) [2], and Phikon-v2 (ViT-L/16) [6]
are trained on a mix of publicly available and proprietary whole slide images
(WSIs). Uni2 (ViT-H/14-reg8) [14] expands upon Uni with a larger dataset and
model, while Virchow2 (ViT-H/14-reg4) [29] applies domain-specific augmenta-
tions and regularization. In contrast, Prov-GigaPath (ViT-G/14) [25] introduces
GigaPath, an SSL framework tailored for whole-slide representations, and trains
on Prov-Path, one of the largest proprietary WSI datasets. Beyond DINOv2-
based models, TITANv (ViT-B/16) [3] is trained using iBOT [28] and contrastive
captioning [27], integrating vision-language alignment while supporting vision-
only representations. MUSK (ViT-L/16) [24] differs from all others by incor-
porating a BEiT3-based [23] multi-modal transformer with pathology-specific
tokenization.

While models vary in their use of proprietary and public datasets, most mod-
els rely on extensive internal datasets. Only Phikon-v2 and MUSK exclusively
use publicly available datasets. MUSK is trained on PubMed central, TCGA [15],
QUILT-1M [13] and PathAsst [22], while Phikon-v2 uses CPTAC [5], TCGA [15]
and GTEx [11]. Uni, Uni2 and TITANv are trained on GTEx and different sub-
sets of proprietary data from the Mass General Brigham Hospital. For training
Virchow2, proprietary data from the Memorial Sloan Kettering Cancer Center
was used, and for Prov-GigaPath, data from the Providence Healthcare System
was used. Finally, while most encoders provide embeddings for the 14x14 pixel
ViT patches, Prov-GigaPath and TITANv focus on whole-slide representations.

4 Experiments and Results

We compare the performance of pathology FMs with the supervised HoVer-NeXt
baseline [1], evaluating multiple aspects, including FM decoder architecture, gen-
eralization under technical and medical domain shifts, and data efficiency. For
all experiments, we report the macro F1 score to reflect class imbalances.

The encoder (FM) weights were kept frozen for all experiments. We fine-tuned
for 10k steps with early stopping in all FM experiments. We used a learning rate
of 3e-5, with a linear warm-up of 1k steps, followed by a cosine decay.

To assess the impact of different decoding strategies, we fine-tuned FMs with
both a simple linear projection head and the UNetR head [12], which incorpo-
rates a U-Net-style decoder architecture. A detailed list of training parameters
and additional metrics can be accessed via GitHub.
Choice of decoder: The choice of decoder has a significant effect, where
the UNetR outperforms the linear projection head by a considerable margin on
most FMs and datasets (Fig. 2a). The greatest performance gain is observed
for MUSK, where using UNetR improves the F1 score by up to 0.19 on the
Arctique dataset. Whereas the smallest effect (no improvement) is seen for Uni2
on PathoCell . We also implemented the Dense Prediction Transformer (DPT)
[18], which yielded very similar results to UNetR: 0.002 F1 decrease for the best

https://github.com/Kainmueller-Lab/Pathology-Foundation-Model-Benchmark
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Fig. 2. Overview of benchmarking results on the base-split of each of the four datasets:
(a) Macro F1 scores of all FMs and HoVer-NeXt, numbers in white indicate results
from the linear probe, results from UNetR are in color. (b) F1 Scores per cell type for
PathoCell dataset, highlighting the challenge posed by rare cell types. (c) Qualitative
example of our predictions and ground truth for a sample with a rare cell type (DC).

model, Uni2, on both Lizard and PathoCell . This suggests a saturation of the
performance of the frozen encoder features. In the following, we report the results
for the UNetR head by default.

Performance across datasets: Model performance varies significantly across
datasets. As expected, the highest scores are achieved on the synthetic dataset
Arctique, where models reach an average F1 of 0.93. Performance decreases for
PanNuke: 0.79 F1, followed by Lizard : 0.71 F1, and is lowest for PathoCell :
0.28 F1.

To better understand model behavior on PathoCell , we analyze the perfor-
mance across different cell types (Fig. 2b). The dataset is highly imbalanced,
with tumor cells being the most abundant, outnumbering the least prevalent
cell type, natural killer (NK) cells, by a factor of 153. As a result, classifica-
tion scores are highly variable, with tumor cells achieving an F1 of 0.65, while
NK cells score near zero. These contrasts illustrate the omnipresent challenge of
recognizing rare cell types in pathology datasets [19].

Generalization under domain shifts: To assess domain generalization, we
evaluate models on dataset splits designed to introduce technical and medical
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Fig. 3. Generalization of FMs and HoVer-NeXt under technical and medical domain
shifts. Top: Mean performance on base split vs. domain split. Dots are individual
model performance. Bottom: Performance by cell type. (a) Lizard Center-Split a
technical domain split by medical centers. (b) PathoCell Tumor-Stage-Split, a medical
split by cancer stages 3 vs. 4. (c) PathoCell Tumor-Type-Split, a medical split by
adenocarcinoma vs. mucinous adenocarcinoma.

domain gaps and compare their results with the random Base-Split . Main results
are given in Fig. 3.

On Lizard we use the Center-Split, which captures a technical domain shift
primarily driven by variations in sample preparation, staining, and imaging
across different medical centers. Under these conditions, F1 for HoVer-NeXt
drops by 0.09, whereas FM performance decreases on average by 0.06 F1 (Fig.
3a), with the most robust models Uni2 and Virchow2 losing less than 0.03 F1,
and the least robust model TITANv dropping by 0.10. Detailed results of the
individual FMs can be accessed on GitHub.

On PathoCell , we evaluate robustness to domain shifts using the medical data
splits Tumor-Stage-Split (Fig. 3b) and Tumor-Type-Split (Fig. 3c). On Tumor-
Stage-Split, FMs exhibit a higher absolute F1 score than HoVer-NeXt despite
experiencing a larger performance drop when compared to the random Base-Split
of 0.05 F1 (compared to HoVer-NeXt’s decrease of 0.03 F1). On Tumor-Type-
Split, HoVer-NeXt’s performance remains stable, decreasing by only .005 F1,
whereas FMs drop by 0.02 F1 on average. Despite this drop, FMs still maintain
a higher overall F1 of 0.27 compared to HoVer-NeXt with 0.23 F1 in this setting.
Parameter- and Data Scaling: We plot the Base-Split performance of the
fine-tuned FMs against the number of parameters and the amount of data used
for their original training (Fig. 4a). Both show a general increase with regard to
their respective parameters.

https://github.com/Kainmueller-Lab/Pathology-Foundation-Model-Benchmark
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Fig. 4. (a) Performance of FMs with respect to the number of trainable parameters
on the left and the number of WSIs in the original training data on the right. (b)
Performance of FMs with UNetR head and HoVer-NeXt with a reduced finetuning
training set size on Lizard and PathoCell .

To further evaluate the FMs, we conduct a data efficiency analysis (Fig. 4b),
by progressively reducing the training set to 50, 20, 10, and 5% of its original
size while keeping the validation and test sets unchanged. On Lizard , FMs show
a clear advantage in low-data regimes, particularly at 5% of the training data,
where they outperform HoVer-NeXt by 0.06 F1 on average. This advantage is
inversely proportional to the amount of training data used. On PathoCell , FMs
maintain a consistent advantage across data reductions ≥ 10%. Their reduced
advantage at 1% and 5% training data sizes may be due to high label imbalance.
The most data-efficient model on both Lizard and PathoCell is Uni2. Detailed
results of the individual FMs can be accessed on GitHub.

5 Discussion and Conclusion

Our experiments show that while FMs generally achieve competitive results in
settings without domain gap (Fig. 2), their advantage over the HoVer-NeXt
baseline remains limited. The choice of decoder plays a crucial role, with the
UNetR decoder consistently outperforming linear projection heads, due to its
ability to better recover spatial details.

Class imbalance remains a challenge, particularly for rare cell types, where
FMs show slightly improved recognition but still struggle with morphologically
ambiguous classes such as dendritic and NK cells. Under technical domain shifts,
FMs exhibit greater robustness than the supervised baseline (Fig. 3a). However,
FMs were more sensitive to medical domain shifts than the baseline (Fig. 3b-
c), albeit maintaining higher absolute performance. In low-data regimes, FMs
consistently outperform the supervised baseline for the Lizard and PathoCell
dataset (Fig. 4b).

Among the evaluated models, approaches based on DINOv2 demonstrate
strong scaling properties, while MUSK and TITANv which were trained with
alternative strategies, such as iBOT or BEiT-style masked consistency learn-
ing, perform less favorably. However, they were also trained with a compar-
atively small dataset (MUSK) or with less model capacity (TITANv) and on

https://github.com/Kainmueller-Lab/Pathology-Foundation-Model-Benchmark
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different datasets, which limits the interpretability of observed scaling trends.
Dataset quality imposes an upper bound on performance, as both PathoCell
and Lizard [9,1] contain label noise. Finally, the reliance of many FMs on un-
published and proprietary training data limits the ability to analyze their scaling
behavior.

This benchmark establishes a foundation for the evaluation of FM for cell
phenotyping in digital pathology and underscores the need for more diverse,
high-quality data sets with precise annotations from multiple institutions. Fu-
ture work should focus on expanding PathoCell with additional tissue types,
improving annotation accuracy, and refining evaluation methodologies to study
the representation space more in detail.
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