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Abstract. Despite numerous techniques developed for polyp segmen-
tation, the issue of generalizability to new centers and populations per-
sists. To address these issues, we compile a multicenter train set consist-
ing of 4,000 polyp frames and propose a novel approach toward gen-
eralizing to different data centers, difficult polyp morphologies (e.g.,
flat or small), and inflammatory conditions such as inflammatory bowel
disease (IBD). In this regard, we propose a transformer-based polyp
segmentation model to leverage global contextual information, and en-
hancement of local feature interactions through a novel feature decod-
ing and fusion method, and polyp edge features. This combines the vi-
sion transformers’ strong contextual understanding with enhanced lo-
cality modeling through graph-based relational understanding and mul-
tiscale feature aggregation. We compare our model with eight recent
state-of-the-art methods under five widely used metrics on the follow-
ing benchmark datasets: Kvasir-Sessile, SUN-SEG-Easy (Seen), ETIS-
LaribPolypDB, CVC-ColonDB, PolypGen-C6, and our in-house IBD
dataset. Extensive experiments show that our model outperforms state-
of-the-art methods on out-of-distribution datasets with mloU improve-
ments of 2.84% on ETIS-LaribPolypDB, 1.26% on CVC-ColonDB, 1.90%
on PolypGen-C6, and 3.52% on the in-house IBD polyp dataset com-
pared to the most accurate recent method. The code is available at
https://github.com/Raneem-MT/ESPNet.

Keywords: Polyp segmentation - Feature shrinkage - Edge-Aware Seg-
mentation- Generalization

1 Introduction

Colorectal cancer (CRC) is the third most common cancer and the second lead-
ing cause of cancer-related deaths worldwide [14]. Also, there exist variations
among clinicians in their ability to accurately detect and delineate these polyps,
mainly due to their different levels of expertise, specialties, and the high vari-
ability in polyps’ morphologies [17,27]. For example, inflammatory bowel disease
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(IBD) has a worse prognosis and higher morbidity compared to the non-IBD-
CRC. This is because IBD dysplasia often presents as flatter and poorly defined
polyps blended with inflamed surrounding mucosa, making them harder to detect
endoscopically [16]. Automated methods for early detection and segmentation
of polyps during colonoscopy screening can significantly reduce the current inci-
dences and help endoscopists remove polyps before they become life-threatening.
However, there is a big gap in the existing state-of-the-art methods [6,25,5] as
they are not rigorously assessed on difficult out-of-distribution scenarios impor-
tant for complex polyp segmentation tasks. Hence, their adoption in routine
clinical settings and across multiple centers remains questionable.

The need to alleviate operator dependency has made automated polyp seg-
mentation an active area of research. CNN-based methods like FCN and UNet
have laid the foundation for dense prediction tasks [13,15], but their local re-
ceptive fields have limited their capturing of long-range dependencies. PraNet
tackled this by generating global maps and introducing a parallel reverse at-
tention network that aggregates high-level features, but it was not robust to
noise [6]. SANet used a shallow attention module to filter out background noise,
but it did not effectively learn the features [22]. LDNet proposed dynamic ker-
nel adaptive learning based on the input features to improve lesion detection,
but it was prone to false positives [25]. CFANet applied cross-level feature ag-
gregation through a boundary prediction module and two-stream segmentation
module that fuses multi-scale features and boundary features [28]; however, it
struggled with challenging scenes like large polyps and complex backgrounds.
Transformer-based models, on the other hand, while strongly capable of model-
ing global context, suffer from the limitation of locality modeling. Polyp-PVT
utilized a pyramid vision transformer (PVT), cascaded fusion, and similarity
aggregation modules to effectively extract and fuse multi-scale features, but it
still faced over-detection (a large number of false positives) in cases of shadows
and light reflections [5]. TransNetR leveraged shortcut connections and resid-
ual transformer blocks to better capture long-range dependencies [10]; however,
it still presented false positives. ASPS integrated both CNN and ViT features
through a cross-branch feature augmentation module to improve feature repre-
sentation, but it did not detect accurate boundaries [12]. MEGANet used an
edge-guided attention (EGA) module that preserves boundary information at
different scales, but it was limited by the inherent noise in the edge features, es-
pecially in complex background scenarios [4]. Despite the numerous techniques
developed in the field of polyp segmentation, the issue of generalizability to
different acquisition systems, centers, and patient populations persists. This is
because supervised models are trained on publicly available datasets, which usu-
ally represent either a single center and one population cohort, making them
tend to struggle when assessed on different data distributions [3,1].

To overcome these limitations, we propose a novel transformer-based edge-
aware polyp segmentation method that leverages a feature shrinkage pyramid
(FSPNet) [7], integrates residual connections for feature enhancement through
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scales, and mask-level (high-level) and edge-level (low-level) features with an
attention mechanism for robust feature learning.

Our contributions can be summarized as follows: 1) We propose to include
a Feature Shrinkage Decoder (FSD) network to learn fine-grained features by
regressing the polyp edges. The learned edge features complement the mask pre-
dictions across four different scales. 2) We apply channel and spatial attention
to the aggregated feature maps to enhance high-level information (e.g., shape)
and low-level features (e.g., edges). 3) We introduce residual connections during
feature shrinkage to preserve cues from earlier scales. 4) We ablate these exper-
iments demonstrating improvements over the baseline FSPNet. 5) Finally, we
assess the generalizability of methods in two contexts: i) on data from 3 data
centers not seen during model training and ii) on an unseen center and different
patient population dataset (IBD) compared to the trained model (non-1BD).

2 Method

2.1 Overview

Figure 1 outlines the architecture of our proposed ESPNet. The main compo-
nents include a ViT encoder, a token-enhancement module (TEM), and mask
and edge feature shrinkage decoders (FSDs). We also include feature fusion at-
tention blocks in both TEM and FSD layers. Specifically, the input image is
serialized into patch tokens that are fed into ViT’s self-attention mechanism for
global context modeling. The TEM is then applied to explore features within
the tokens and the interactions between them through a graph fusion module
(GFM). The enhanced features are then passed to the mask and edge FSDs,
where each aggregates adjacent features while upscaling them until reaching the
output. To retain information, residual connections are applied between scales.
Finally, to accumulate the best object features from the masks and edges, an
attention block is applied to the concatenated features.

2.2 Vision Transformer Encoder

The data-efficient image transformer (DeiT) [20] is kept as the encoder as they
are less prone to overfitting. In DeiT, the input image I € RE*H*W ig first
divided into non-overlapping patches of size pxp (16 x 16 in our case). Each patch
is flattened into a vector and then linearly projected into a 1D sequence of token
embeddings for the transformer input 7°. A learnable position embedding 7P¢
that refers to the location of each patch in the image is added to the embeddings.
Finally, a distillation token 7 is added to allow learning from the teacher’s
predictions, so the final token becomes T7 = T° + TP¢ 4+ T? The tokens are
then fed into the encoder’s transformer layers, each containing a multi-head self-
attention (MSA) and a multi-layer perceptron (MLP) block (MSA+MLP layers),
giving a sequence of refined tokens as the output from the encoder, capturing
long-range relations in the image:

T = MLP(MSA(T”)) (1)
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Fig. 1. Overall architecture of ESPNet includes a DeiT encoder, token enhancement
module, edge and mask FSDs with residual connections, and attention-guided fusion.

2.3 Token Enhancement Module

While ViTs capture strong contextual information, they lack mechanisms for un-
derstanding local information. FSPNet provides a local enhancement mechanism
that fuses adjacent token pairs through attention and graph-based refinement.
First, two adjacent tokens T7, 15 are fused into one token that interacts with
them to produce an attention-weighted feature map T, and explore correlations
with them. The tokens are then refined through a single-layer graph convolu-
tional network (GCN) that learns high-level semantic relations between regions
to capture global representations within tokens (GFM), outputting Tg. Finally,
a skip connection combines the original token 7} with 7}, and Tg, followed by
deserialization D to produce the enhanced token as 2D image features with the
same dimension as the original features for decoding, giving the output token
To,, and the same can be applied to get T, and other token pairs:

To, = D(T, T, +Ty) (2)
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2.4 Edge-Aware Feature Shrinkage Decoder

FSPNet’s FSD facilitates an intra- and inter-layer feature fusion module (FM),
where it hierarchically aggregates feature pairs from consecutive scales in a four-
scale pyramid (16, 8, 4, 1), in addition to combining features within the same
scale, achieving a smooth flow for cue accumulation. We build on FSPNet’s de-
coder by creating another FSD for edge prediction E to guide the mask segmen-
tation M. The edge pyramid has the same FSD structure, where we concatenate
the learned edge features to the mask features at different FSD scales s, and we
apply a convolutional block attention module (CBAM) to refine the aggregated
features [24], in addition to adding residual connections between scales to retain
information throughout aggregation. Figure 1 illustrates our edge-aware shrink-
age module. Finally, we use structure loss (Lstructure) for mask prediction [23]
compared with the ground truth (GT) mask Gy, and binary cross-entropy loss
(Lpck) for edge prediction compared with GT edge Gg. Both losses contribute
equally to the joint loss. The pyramid is supervised at the four different scales
through GT feature maps PixelShuffle upsampling operations:

3 3
‘Cjoint = Z ACstructure(Z\457 GM) + Z EBCE(ES7 GE) (3>

s=0 s=0

3 Experiments and Results

3.1 Datasets and Evaluation Metrics

To push generalizability to new centers and populations, we compiled a 4000-
image white light endoscopy (WLE) training dataset: 804 images from Kvasir-
SEG [9], 1,182 images from centers 1-5 in the PolypGen dataset [2], and 2,014 im-
ages from the SUN-SEG training dataset [11]. SUN-SEG is a video colonoscopy
dataset that includes 100 positive cases with polyp frames. Around 20 non-
consecutive frames were selected per positive case, such that the polyps are
viewed from different angles. To evaluate our model against other methods,
we train our model on the compiled dataset, and use five publicly available
polyp segmentation datasets for evaluation: Kvasir-Sessile [§] and SUN-SEG-
Easy (Seen) [11] are used to assess performance on test sets from centers seen
during training. ETIS-LaribPolypDB [18], CVC-ColonDB [19], and PolypGen-
C6 [2] are used for out-of-distribution center testing (not seen during training).
Moreover, we use our private in-house IBD dataset to test on an unseen cen-
ter and population during training. Our dataset consists of 95 images collected
between 2017 and 2020 from 44 patients with IBD at Leeds Teaching Hospitals
NHS Trust (REC ethical approval reference 17/EM/0033). All frames contain
visible polyps and are annotated with masks validated independently by two
expert endoscopists, each with over 10 years of clinical experience.

We use five widely used polyp segmentation metrics to evaluate the performance:
mean Intersection over Union score (mIoU), mean Dice score (mDice), S-measure
(Sa), weighted F-measure (Fj), and mean absolute error (MAE) [6].
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Table 1. Quantitative comparison with eight methods on similar distribution (seen)
datasets. 1T / | denote larger/smaller is better, respectively, with best results in bold.

Data | Methods mloU?t | mDicet | Sat Fg,T | MAE|
PraNet [MICCAT20] [6] 0.772 0.845 0.891 | 0.829 0.027
° SANet [MICCAT21] [22] 0.700 | 0.793 | 0.860 | 0.753 | 0.044
T% LDNet [MICCAT22| [26] 0.770 0.849 0.904 0.828 0.026
o CFANet [Pr23] [28] 0.749 0.832 0.887 | 0.802 0.033
é TransNetR [PMLR 23] [10] 0.774 0.850 0.894 | 0.836 0.024
g Polyp-PVT [A1123] [5] 0.807 0.878 | 0.912 | 0.863 | 0.020
= ASPS |MICcCAT24] [12] 0.475 0.600 0.726 | 0.548 0.064
MEGANet [WACV24] [4] 0.819 0.883 0.911 0.870 0.021
Ours (ESPNet) 0.819 0.883 0.913 | 0.874 | 0.019
PraNet [MI1CCAT20] [6] 0.795 0.861 0.905 | 0.845 0.019
s SANet [MICCAT21] [22] 0.720 0.808 0.875 0.763 0.036
) LDNet [MICCAT22] [26] 0.818 0.883 0.930 | 0.861 0.016
9 CFANet [Pr23] [28] 0.767 | 0.844 | 0.902 | 0.806 | 0.025
g TransNetR [Pyviir23 | [10] | 0.819 | 0.881 | 0.920 | 0.870 | 0.014
Z. Polyp-PVT [A1r23] [5] 0.858 0.910 0.933 | 0.901 0.015
2 ASPS [miccar2d) [12] 0.53 0629 | 0.726 | 0.622 | 0.044
MEGANet [wacvas| [4] | 0.864 | 0.917 | 0.936 | 0.907 | 0.011
Ours (ESPNet) 0.859 0.912 0.936 | 0.902 0.011

3.2 Implementation Details

Our proposed ESPNet is implemented in PyTorch. We used DeiT-trained ViT
as an encoder, with an input image size of 384 x 384 and a patch size of 16 x 16.
Geometric augmentations (vertical and horizontal flips, and random rotations)
were applied to all the training data. Adam was used as the optimizer, and the
learning rate was initialized to 1le~# and then scaled down by 10 at 50 epochs in
our model and the baseline. The complete training process for 100 epochs with
a batch size of 8 took around 9 hours on 4 NVIDIA L40S 48GB GPUs.

3.3 Results

To demonstrate the effectiveness of our method, we compare it with eight pop-
ular state-of-the-art (SOTA) polyp segmentation models. The models were re-
trained on our dataset with the same implementation details to ensure fairness.
Table 1 shows the performance on the seen datasets: Kvasir-Sessile (same center
as Kvasir-SEG) and SUN-SEG-Easy (Seen). Table 2 shows the performance on
the unseen datasets.

While ESPNet has similar performance to SOTAs in the seen datasets, it
achieves the best metrics on all unseen datasets at frames per second (FPS) rang-
ing between 25 to 35, which is around the real-time requirement in colonoscopy
(30 FPS) [21]. Specifically, we show the following mIoU improvements on the dif-
ferent test sets: 2.84% on ETIS-LaribPolypDB, 1.26% on CVC-ColonDB, 2.01%
on PolypGen-C6, and 3.52% on our IBD dataset. It can be seen that there is
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Table 2. Quantitative comparison with 8 methods on unseen datasets. Notes: 1 / |
denote that larger/smaller is better, respectively, with best results in bold.

Data | Methods mloU?T | mDicel SaT Fgp 1 | MAE]
m PraNet [MICCAT20] [6] 0.662 0.722 0.847 | 0.704 | 0.016
2 SANet [MIcCAT21] [22] 0.579 | 0.677 | 0.803 | 0.611 | 0.026
=z LDNet [M1CCAT22| [26] 0.631 0.704 | 0.840 | 0.665 | 0.024
53 CFANet [Pr23] [28] 0.634 0.721 0.843 | 0.672 0.016
i TransNetR [Pyviir23) [10] | 0.643 | 0.717 | 0.837 | 0.684 | 0.016
= Polyp-PVT |A1r23] [5] 0.685 0.753 | 0.854 | 0.731 | 0.020
E ASPS |[MICcCAT24] [12] 0.333 0.418 0.666 | 0.389 0.033
a MEGANet [wAacv24) [4] | 0.739 | 0.811 | 0.872 | 0.783 | 0.026
Ours (ESPNet) 0.760 0.827 0.890 | 0.808 | 0.016
PraNet [MI1CCAT20] [6] 0.679 0.752 0.844 | 0.746 | 0.032
m SANet [MICCAT21] [22] 0.622 0.712 0.811 0.677 0.050
9 LDNet [MICCAT22] [26] 0.702 0.783 0.865 | 0.771 0.038
2 CFANet [Pr23 [28] 0.684 | 0.765 | 0.849 | 0.747 | 0.036
O TransNetR [PyviLr23] [10] | 0.650 0.725 | 0.823 | 0.718 | 0.038
g Polyp-PVT [A1r23] [5] 0.700 0.775 0.848 | 0.767 0.037
O ASPS [MICCAT24] [12] 0.405 0.497 0.693 | 0.488 0.052
MEGANet [wACv24] [4] 0.716 0.794 0.845 | 0.782 0.047
Ours (ESPNet) 0.725 0.802 0.856 | 0.794 | 0.032
PraNet [MICCAT20] [6] 0.696 0.759 0.880 | 0.737 0.019
© SANet [MICCAT21] [22] 0.629 0.706 0.840 | 0.662 0.034
Q LDNet [MICCAT22] [26] 0.698 0.757 0.884 | 0.738 0.022
g CFANet [Pr23] [28] 0.663 0.735 | 0.865 | 0.705 | 0.026
% TransNetR [PMLR23] [10] | 0.695 0.751 0.876 | 0.733 0.014
= Polyp-PVT [A1r23] [5] 0.739 | 0.795 | 0.903 | 0.780 | 0.012
A ASPS |Miccar24] [12] 0.521 0.605 0.783 | 0.570 | 0.043
MEGANet [wACv24] [4] 0.738 0.800 0.883 | 0.777 0.031
Ours (ESPNet) 0.753 0.802 0.890 | 0.791 0.024
PraNet [M1CCAT20] [6] 0.646 0.728 0.819 | 0.703 0.053
SANet [MICCAT21] [22] 0.142 0.191 0.490 | 0.174 0.128
LDNet [MIcCAT22| [26] 0.647 0.738 0.833 | 0.703 0.046
A CFANet [Pr23| [28] 0.585 0.68 | 0.794 | 0.646 | 0.044
= TransNetR [PyviLr23) [10] | 0.614 | 0.710 | 0.803 | 0.676 | 0.044
Polyp-PVT [A1r23] [5] 0.658 0.750 0.827 | 0.720 0.054
ASPS [MICcCAT24] [12] 0.460 0.572 0.710 | 0.542 0.054
MEGANet [wACV24] [4] 0.682 0.767 0.832 | 0.736 0.057
Ours (ESPNet) 0.706 0.795 0.851 | 0.773 | 0.032

a drop in performance across all models on the IBD dataset as opposed to the
other unseen datasets, demonstrating the generally more challenging scenarios
encountered in IBD. Figure 2 demonstrates the qualitative results on the unseen
test set; the top four performing models were selected for visualization: ESP-
Net, MEGANet, PolypPVT, and LDNet. It shows that ESPNet is able to detect
challenging cases more accurately, such as flat, multiple, small, and large polyps
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Table 3. Ablation experiments of ESPNet on CVC-ColonDB and ETIS-LaribPolypDB

Experiment ETIS-LaribPolypDB|CVC-ColonDB
mloU mDice mloU mDice
FSPNet Baseline 0.683 0.763 0.692 0.770
+Edge FSD 0.733 0.809 0.706 0.783
+CBAM 0.730 0.807 0.714  0.794
+Residual Connections| 0.760 0.827 0.725 0.802

(top to bottom). MEGANet seems to have more false positives, and LDNet has
more false negatives.

PolypPVT MEGANet

- 3

IBD

PGen-C6

ColonDB  ETIS-Larib

Fig. 2. Qualitative results of the top four methods on unseen dataset samples.

3.4 Ablation Study

To understand the generalizability to unseen data, we chose two external datasets,
CVC-ColonDB and ETIS-LaribPolypDB. Our ablation shows improvement on
both datasets. We compare with FSPNet as our baseline and show that the
performance increases in both mloU and mDice when adding the edge FSD,
then attention after edge-mask feature concatenation, and finally adding resid-
ual connections between consecutive scales. Our overall improvement from the
FSPNet baseline to our final ESPNet is 11.27% in mIoU on ETIS-LaribPolypDB
and 4.77% in mIoU on CVC-ColonDB, showing that our incorporation of edge
features with attention and residual connections is beneficial.
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4 Conclusion

In this work, we proposed a novel edge-aware feature shrinkage decoding net-
work, ESPNet, for effective polyp segmentation in varied seen and unseen polyp
datasets. The key idea is to improve low-level morphological feature learning
by adding an additional feature shrinkage decoder for edge detection and con-
catenating these edge features with mask features, before refining them through
attention and adding residual connections between consecutive scales, thereby re-
taining important features across various scales. Our experiments demonstrated
improved model performance and generalizability to out-of-distribution datasets,
including four different population cohorts compared to the training dataset.
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