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Abstract. We present NIMOSEF, a novel unified framework that lever-
ages neural implicit functions for joint segmentation, reconstruction,
and displacement field estimation in cardiac magnetic resonance imaging
(CMRI). By leveraging on a shared implicit representation for joint seg-
mentation and motion estimation our approach improves spatio-temporal
consistency with respect to conventional grid-based convolutional neu-
ral networks and implicit segmentation functions. NIMOSEF employs
an auto-decoder architecture to learn subject-specific latent represen-
tations from unstructured point clouds derived from image intensities
and reference segmentations. These latent codes, when combined with
4D space—time coordinates, enable the generation of high-resolution seg-
mentation outputs and smooth, temporally coherent motion estimates.
Experimental evaluation on a subset of 700 random patients from the UK
Biobank demonstrates that our method achieves competitive segmenta-
tion accuracy—attaining Dice scores of up to 0.93 for the LV, 0.90 for
the RV and 0.83 for the LV myocardium, with improved spatio-temporal
consistency, predicting a smaller number of disconnected components.
Simultaneously, it achieves an average registration error of the whole
heart boundary of 3.084+1.23mm measured by the Chamfer distance, and
8.57+4.74mm according to the 95th percentile Hausdorff distance. Addi-
tionally, feature importance analysis reveals that the learnt implicit rep-
resentation encodes physiologically relevant information. These results
suggest that NIMOSEF offers a promising alternative for high-resolution,
temporally consistent cardiac segmentation and motion estimation, with
promising potential for advancing clinical assessment of cardiac function.
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1 Introduction

Image segmentation is key in the medical field for studying the morphology of
objects of interest. In general, segmentation involves assigning a class label to
every point in the input space. In cardiac magnetic resonance imaging (CMRI),
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accurate segmentation and motion estimation are essential for the clinical as-
sessment of cardiac function, and is increasingly part of clinical routine.

Typically, since images are presented in a grid-like structure, Convolutional
Neural Networks (CNNs) have become the de facto standard for medical im-
age segmentation [3/I]. However, their reliance on grid-based (2D or 3D) rep-
resentations limits the resolution of outputs and often requires additional post-
processing to achieve high-quality results [I5]. Furthermore, CNN training is
computationally expensive [20], scaling exponentially with image resolution, and
these models often generalize poorly to critical input transformations, such as
scaling [27UTOUT8]. To address these challenges, several approaches have incorpo-
rated dataset-specific characteristics through augmentations and multi-scale fea-
ture extractors [I1], achieving impressive scores on various challenges [I]. Other
works have proposed lighter architectures [I6] and mechanisms to capture long-
range dependencies based on transformers [24] and sequence-state models [34].
Nevertheless, these methods require complex architectures and are computa-
tionally expensive with respect to memory. Recent studies explored the use of
implicit neural representations (INRs) for segmentation [28/22], demonstrating
that high-resolution outputs can be generated from sparse measurements. In
these works, a neural network learns a mapping from a coordinate space to an
arbitrary real-valued space (e.g., a segmentation label, a distance function, or the
image intensity) [17]. However, due to the unstructured nature of the approach
in which each voxel is treated independently, the obtained segmentation can
result in non-connected components and temporal inconsistencies, and during
inference, the selection of a proper validation criterion (e.g., determining when
to stop training) is challenging. In parallel, implicit functions have also been
used for modeling displacement fields in image registration [I919]. However, to
our knowledge, no joint model has tried to obtain an implicit representation
valid for the joint estimation of motion and segmentation labels.

In this work, we introduce NIMOSEF, a novel unified framework that simul-
taneously estimates segmentation labels, reconstructs image intensity, and pre-
dicts displacement fields within an INR paradigm to promote spatio-temporal
continuity. The core of the framework is an auto-decoder process that approxi-
mates a subject’s latent representation (h) from pairs of coordinate-image inten-
sity values (c,4). Given the latent representation, the image intensity, segmen-
tation labels, and displacement field with respect to a reference frame, tg, can
be sampled at any arbitrary spatio-temporal coordinates. This joint formulation
serves as an effective regularizer and improves the overall robustness of cardiac
segmentation and motion estimation. We evaluate the proposed framework on a
random subset of 700 subjects from the UK Biobank [29] using short-axis CMRI
images. We report segmentation scores, registration metrics and investigate the
latent space of the learnt implicit representation. The source code is available at
https://github.com/jbanusco/nimosef-v1.
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Fig.1: Workflow schematic. We identify a region of interest (ROI) centered
around the heart. Next, we segment the images using a pre-trained CNN [2].
The intensity and segmentation are sampled as unstructured point clouds and
provided to the implicit neural network. Right panel shows the mesh obtained
from the CNN segmentation and the outputs of the baseline and NIMOSEF.

2 Related work

2.1 Implicit neural representations

INRs are a paradigm shift from explicit representations by learning a continuous
mapping from input coordinates to desired outputs. Early work in this area, such
as occupancy networks [21/4] and signed distance functions [23|, demonstrated
that implicit representations can accurately capture complex 3D geometries.
Due to their continuous nature, INRs can naturally interpolate sparse observa-
tions and enable evaluation at arbitrary resolutions without the need for post-
processing, producing smoother representations. INRs have rapidly improved
through novel activation functions and adjusting encoding strategies [§].

2.2 INR for Image Segmentation

Segmentation INRs usually adopt an auto-decoder framework that maps contin-
uous coordinate spaces to segmentation probabilities and image intensities. This
continuous formulation allows for sampling at any resolution during both train-
ing and inference, making the approach inherently robust to the anisotropic
nature of medical imaging data. Recent studies have shown that INRs not
only capture detailed anatomical shapes from sparse measurements but can also
outperform conventional grid-based methods like U-Net [28/22] obtaining high-
resolution versions of the objects from a sparse set of measurements.
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2.3 INR for Image Registration

INR have also been applied in image registration [33]. For example, INRs were
used to register the left ventricular myocardium in CT images by encoding signed
distance fields and Hounsfield unit information [19]. In another approach, a dif-
feomorphic framework was introduced to estimate a continuous velocity field that
is integrated via an ordinary differential equation (ODE), resulting in smooth,
temporally consistent deformations with periodic constraints [9]. These advances
highlight the potential of INRs to model complex, continuous deformations.

3 Methods

3.1 Shared Latent Space and Implicit Representation

Our network parametrizes a mapping between the image domain and a shared
latent space H across all subjects. Each subject j is associated with a latent
code h; € R? that encodes subject-specific anatomical features and represents its
location in the learned cardiac shape space. In our framework, h; is concatenated
with a 4D space-time coordinate ¢ € R* to condition all downstream tasks:
segmentation, intensity reconstruction, and displacement field estimation.

3.2 Model Architecture

Implcit Neural Representation ( 4)
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Fig. 2: Architecture overview. The box depicts the implicit neural repre-
sentation, consisting of multiple residual layers with WIRE activations that take
as input the subject-specific latent code (h) concatenated with the space-time co-
ordinate (z,y, z,t). From this representation, the network predicts segmentation
probabilities and image intensities. The blue box illustrates the displacement
module, which applies a non-linear transformation to produce a “motion code",
then combines it with the latent representation to yield the final displacement.

As shown in Figure [2] our neural network is implemented as an encoder-
decoder architecture using a multilayer perceptron (MLP) with 8 residual lay-
ers, each comprising 128 units. We employ Wavelet Implicit Neural Represen-
tation (WIRE) activation functions [26] for space-frequency localization. The
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encoder receives as input the concatenation of the subject-specific latent code
h; and the space-time coordinate ¢ = (x,y, 2,t). The encoded representation
is used downstream for three prediction heads. The segmentation head, (fp),
predicts a segmentation probability vector s, € [0,1]™ for M classes, ensuring
that sz\i1 s’ = 1. The reconstruction head, (f,), predicts the image intensity
i. € [0,1]. The displacement head (fs) predicts a displacement vector d, € R3.
In the displacement branch, an additional linear layer followed by a sigmoid-
weighted linear unit (SiLU) [TI12] is used to generate a "motion code", which is
then concatenated with the encoder’s representation to predict the displacement.

3.3 Training

At training, the latent codes (h;) are randomly initialized and optimized jointly
with the network parameters. The overall loss function is a weighted sum of
several components. The segmentation loss is a combination of cross-entropy
loss Lo g and Dice loss Lpjce between the predicted segmentation fy(c, h;) and
the ground truth s.. The intensity reconstruction loss is defined as an Lq loss,
L1, between the predicted intensity f,(c,h;) and the true intensity .. The
displacement loss, Lgsp, is based on the chamfer distance between the predicted
boundary (after applying the predicted displacement) and the ground-truth seg-
mentation boundary at time ¢. Since the reference frame is ¢, an L2 loss, Lq,
penalises the predicted displacement at ty, forcing it to vanish. In addition, a
Jacobian regularization loss, L, penalizes unrealistic deformations by discour-
aging negative determinants in the displacement field’s Jacobian. Finally, an Lo
regularization term, £y, (h;), is applied to the latent codes to prevent overfitting
and promote a compact representation. The overall loss function is formulated
as follows:

‘C(ea s (5, ¢7 hj) = /\seg (ECE (fe(c, hj)a Sc) + Lpice (f0<c7 hj)7 30))
+ Arec ‘CLl (f’y(ca h]'), Zc) + )\dsp £dsp (f5 (ca hj)a btoa bt)

+ A'r'eg‘cbd (ftS (Cv h])7 bto? bto)
+ Ay L(F5(e:hy)sbe) + Mag Lo, (hy), (1)

where by, and b; denote the segmentation boundaries at the reference time, to,
and target time, ¢, respectively. Aseg, Arecs; Adsp, Aregs AJ, and Ajyg are the corre-
sponding weighting coefficients. Displacement is computed from a fixed reference
time ¢y (representing end-diastole, heart is fully relaxed) to any other time ¢ in
the cardiac cycle. The segmentation boundary is extracted at times ¢y and t. To
identify boundary points, we compute the 5-nearest neighbors for each segmen-
tation point and flag a point as a boundary if any of its neighbors has a value
of 0. Subsequently, a 5-nearest neighbor graph is constructed, using a maxi-
mum distance threshold set to 1.5 times the average distance between boundary
points. K-NN computations are performed using PyTorch3D [25], and the graph
is built with Deep Graph Library (DGL) [32]. The graph is used to approximate
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the Jacobian of the displacement field along the edges as J ~ %, where Au and
Az denote the changes in displacement and position, respectively.

4 Experiments

4.1 Data

We randomly sampled 700 subjects from the UK Biobank [29] cohort having
short-axis CMRI. The images cover the base to the apex, with an in-slice res-
olution of ~ 1.5mm? and a slice thickness ranging from 5 to 10mm. The refer-
ence segmentations were obtained using a pre-trained CNN as described in [2].
A region of interest (ROI) covering the heart was defined based on the cir-
cular Hough transform [I3I6]. After identifying an approximate LV center we
extracted a 128 x 128 patch centered around it. The images were normalized as
Inorm = (I — I3) /(12 — Igs), where I corresponds to the image intensity and I
and Iys to the 2nd and 98th percentile respectively.

4.2 Experiment details

Each subject’s latent vector was initialized as h; ~ N(0, 10~2), promoting a
compact representation that enables smooth interpolation. Both the network
parameters and the subject-specific latent vectors (h;) are optimized jointly.
For each training batch, a reference time ¢y and an additional time frame ¢ are
sampled, and 90% of the corresponding 3D volume points are processed. The
loss is computed from reconstruction, segmentation, and boundary mismatch
errors after applying the predicted displacement. We trained each model for 500
epochs over 4 days on an NVIDIA RTX6000 using the Adam optimizer [14] with
differential learning rates, 103 for the latent code, 5 - 10~ for the remaining
parameters, and a weight decay of 10~4. Loss weights were selected on a random
subset of subjects and set to Arec = 2, Aseg = 1, Adsp = 0.5, A3 =1, A\peg = 0.1
and Ajpy = 0.01 for our model, while for the baseline (no motion estimation)
Adsp, Areg and Ay were set to zero, making it comparable to the NISE imple-
mentation [28]. To explore the latent space, we computed the mean shape code
for each model and measured the L2 distance of each subject to this mean. A
Random Forest regressor with 5-fold cross-validation was then used to assess the
relationship between the distance and UK Biobank variables related to cardio-
vascular health, including cardiac function, clinical chemistry, demographic data
and ECG recordings among others.

4.3 Results

Table [I| summarizes the segmentation performance. NIMOSEF predicts segmen-
tations comparable to the CNN reference and the baseline while producing fewer
disconnected components. Registration performance is reported in Table [2] NI-
MOSEF attains a Chamfer distance of 3.08 + 1.23mm and a 95th percentile
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Table 1: Segmentation performance: Dice score and average maximum number
of connected components (CC) for each label.

Dice Score (1 better)
Method LV MYO RV

Baseline  0.95+0.01 0.874+0.03 0.92+0.02
Ours 0.93+0.02 0.83£0.05 0.904+0.03
CNN Ref. — — —

Max CC (| better)
LvV MYO RV

1.08 £0.30 1.57£0.75 1.21 £0.44
1.02+£0.14 1.44£0.69 1.16 £0.38
1.04+0.20 1.35+£0.49 1.29+0.47

Table 2: Chamfer distance and Hausdorff (95th percentile) distance between
predicted boundary and target boundary of the CNN segmentation.

Method Chamfer Dist. [mm]| (/) Hausdorff [mm] (95%) ({)
Ours 3.08+£1.23 8.57 £ 4.74

Hausdorff distance of 8.57 +4.74mm, comparable to CNN-based registration ap-
proaches [3I]. Volume index analysis (Figure [4h) highlights that the temporal
evolution of cardiac volumes estimated by NIMOSEF matches the reference seg-
mentation, with smooth and temporally consistent profiles. The volume deriva-
tive curves (Figure [{p) of NIMOSEF are smoother compared to the other meth-
ods. Feature importance analysis (Figure [3]), shows that the implicit representa-
tion learnt by NIMOSEF is better explained by a set of clinical, demographic,
and laboratory features compared to the baseline (R? of 0.22 vs 0.18).

Average Feature Importances Across Folds (5-Fold CV)
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Fig. 3: Top-20 features based on average feature importance across 5-fold cross-
validation. Demographic, clinical, and laboratory measurements were used to
predict the distance to the mean shape code. Baseline: first visit date; Image:
imaging visit date. BSA: body surface area; BMI: body mass index; FVC: forced
vital capacity; PEF: peak expiratory flow; PWA: pulse wave analysis; ECG:
electrocardiography; SV: stroke volume; ESV: end-systolic volume.
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Fig.4: a) Average volume index curves for each segmentation approach. Shaded
regions denote 95% confidence intervals. b) Volume derivative curves. LV: left
ventricle; RV: right ventricle; Myo: Left ventricle myocardium.

5 Discussion

Experiments on the UK Biobank dataset demonstrate that NIMOSEF recon-
structs image intensity, predicts segmentation labels with improved spatial co-
herence (evidenced by a reduced average maximum number of connected re-
gions), and achieves motion estimation comparable to conventional approaches.
Feature importance analysis indicates that our model captures clinically relevant
information. Nonetheless, the auto-decoder framework is slow at inference due
to latent code optimization. Recent studies suggest that conditioning on demo-
graphic variations [30] or clinical sub-populations [5] can enable a more informed
latent initialization. Future work will explore whether conditioning improves
performance without biasing predictions or limiting the interpretability of latent
codes. Conditioning may boost accuracy but could also constrain the structure of
learned representations. We also highlight that the reported segmentation scores
are based on reference annotations derived from a pre-trained CNN [2]. These
annotations contain spatial inconsistencies—particularly at challenging regions
such as the apex or base. This limitation makes Dice scores less informative in
those areas. In this context, NIMOSEF’s ability to produce smoother and more
connected structures could serve as a form of implicit label refinement. Moreover,
since ground-truth boundaries are unavailable at inference, we plan to explore a
warm-up period—guided by intensity reconstruction—followed by graph-based
displacement metrics computed using the estimated boundaries from predicted
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segmentations. Finally, incorporating diffeomorphic or periodic constraints could
further enhance motion consistency [9].

6 Conclusion

In this paper, we introduced NIMOSEF, a novel unified framework that learns
an INR for joint segmentation, reconstruction, and displacement field estimation
in CMRI. We demonstrated that a shared INR can be effectively used to obtain
high-resolution segmentation and accurate displacement estimation. Future work
will focus on enhancing computational efficiency and validating our results.
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