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Abstract. Radiology deep learning pipelines predominantly employ end-
to-end 3D networks based on models pre-trained on other tasks, which
are then fine-tuned on the task at hand. In contrast, adjacent medi-
cal fields such as pathology, which focus on 2D images, have effectively
adopted task-agnostic foundational models based on self-supervised learn-
ing (SSL), combined with weakly-supervised deep learning (DL). How-
ever, the field of radiology still lacks task-agnostic representation models
due to the computational and data demands of 3D imaging and the
anatomical complexity inherent to radiology scans. To address this gap,
we propose Clear, a framework for 3D radiology images that uses ex-
tracted embeddings from 2D slices along with attention-based aggrega-
tion to efficiently predict clinical endpoints. As part of this framework,
we introduce Lecl, a novel approach to obtain visual representations
driven by abnormalities in 2D axial slices across different locations of
the CT scans. Specifically, we trained single-domain contrastive learn-
ing approaches using three different architectures: Vision Transform-
ers, Vision State Space Models and Gated Convolutional Neural Net-
works. We evaluate our approach across three clinical tasks: tumor le-
sion location, lung disease detection, and patient staging, benchmarking
against four state-of-the-art foundation models, including BiomedCLIP.
Our findings demonstrate that Clear, using representations learned
through Lecl, outperforms existing foundation models, while being sub-
stantially more compute- and data-efficient. The code is available at
https://github.com/KatherLab/CLEAR.

1 Introduction

Recent advances in precision oncology have highlighted the need for artificial
intelligence (AI) systems capable of analyzing whole-body radiology images to
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characterize metastatic cancer patients [24]. The development of spatial biomark-
ers from radiology predominantly consists of the implementation of either hand-
crafted features (radiomics), or end-to-end deep learning (DL) pipelines (Fig. 1A)
[5]. These approaches, however, both require manual or automated scan selection,
followed by identification and manual annotation of lesions [23]. With DL sys-
tems demanding extensive annotated datasets for specific tasks, these resource-
intensive processing requirements represent a substantial bottleneck in current
biomarker development pipelines [5, 23].

In contrast, adjacent fields such as pathology has established effective pipelines
using task-agnostic foundation models combined with attention-based aggrega-
tion, reducing the need for extensive preprocessing [9]. However, radiology lacks
such foundation models that can extract generalizable imaging representations
without task-specific fine-tuning of the encoder [22]. Existing models are either
too specific to certain regions and applications [21, 6, 10] or overly generalized
across modalities [29].

To address these challenges, our contributions are as follows:

– We propose Contrastive Learning-based Embeddings for Attention-based
Radiology (Clear) (see Fig. 1B), a domain-specific framework for radi-
ology that integrates foundation models and attention methods for model
development in diverse clinical applications.

– As part of this framework, we introduce Lesion-enhanced Contrastive Learn-
ing (LeCL) (Fig. 1C), a novel semi-supervised method, and compare it with
MoCo-v3 [7] for feature representation of abnormal lesions throughout the
whole body.

– We performed a comprehensive analysis of different 2D-based model archi-
tectures, including Vision Transformers (ViT), Vision State Space Models
(VSSM) and gated Convolutional Neural Networks (CNN), to develop more
effective domain-specific foundation models.

2 Related work

Most research in radiology for developing non-invasive biomarkers has relied
on radiomics [1]. Although recent deep learning advancements have enabled di-
rect prediction of treatment response without manual feature extraction [16–18],
these approaches require fine-tuning. Inspired by the success in the pathology
field where learned representations are combined with attention-based meth-
ods, we propose a framework that integrates frozen pretrained features with
attention-based multiple instance learning (MIL) for radiology.

Progress has been made towards foundation models for imaging biomark-
ers using self-supervised learning in radiology [13]. Initially targeting radio-
graphs [4], recent work has expanded to 3D modalities such as CT and MRI [26,
10, 6]. However, the largest foundation models remain proprietary [28], while
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Fig. 1: Overview of the proposed framework Clear. Currently, end-to-
end deep learning approaches in radiology mostly fine-tune the encoder for each
specific task separately (A). We developed a weakly supervised pipeline that
deploys a pretrained encoder to extract frozen embeddings, which are used for
supervised training of an attention-based pooling model (B). For pretraining
the feature extractor, we introduce LeCL, a semi-supervised algorithm that
guarantees that the abnormalities are within the crops of the images (C).

other approaches require lesion annotations during inference [21]. We proposed
a novel, open-source SSL foundation model for CT scans with a lesion-aware
semi-supervised framework utilizing specific cropping strategies during training,
similar to successful approaches in other medical imaging fields [14].

While existing methods often rely on computationally intensive 3D archi-
tectures requiring encoder fine-tuning [10, 6], attention-based approaches have
shown promise in capturing complex imaging patterns [3, 19, 12]. Our study
introduces a computationally efficient approach that combines 2D slice-based
representation with attention mechanisms, outperforming other 3D SSL mod-
els [10, 6] and achieving comparable performance to general-purpose models like
BiomedCLIP [29] despite training on a smaller dataset, while eliminating the
need for lesion-level annotations at inference time.

3 Methods

As part of the CLEAR framework, we introduce LeCL, a semi-supervised DL
framework for representation learning from radiology images, building upon con-
trastive SSL methods. Our method uses 2D axial CT scan slices.

3.1 Lesion enhanced contrastive learning

To increase the focus on lesions in CT scans, we propose LeCL. This method
ensures that the momentum encoder receives lesion-centered image crops for
annotated slices, while the key encoder embeds the full image of the same slice.
Let q and k denote the query and key feature vectors, respectively, derived from
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different random augmentations of the same input image. The InfoNCE loss
function [20] is given by:

Lq = − log
ψ(q,k+)
N∑
i=1

ψ(q,ki)

, (1)

where k+ represents the positive key (i.e., the key corresponding to the same
image as the query q), ki represents the i-th negative key, and ψ(x1,x2) =
exp(sim(x1,x2)/τ), with τ representing the temperature parameter and sim(·)
denoting cosine similarity. We introduce an additional term ξ =

∑L
j=1 ψ(q, lj),

with {lj}j∈{1,...,L} denoting the set of key slices of the training set, to increase
the weight of key slice encodings:

LLeCL
q = − log

ψ(q,k+)∑N
i=1 ψ(q,ki) + λ · ξ

, (2)

where λ denotes a weighting factor for the introduced term. Our implementation
is based on the MoCo-v3 repository [7], following the principles of contrastive
learning outlined by He et al. [11].

3.2 Weakly supervised learning on frozen features

The embeddings from all axial slices of the CT scan are extracted using con-
trastive learning methods and serve as input for the subsequent classification
module. The aggregation of slice embeddings H is defined by the MIL pooling
function f : RK×d → Rd [15]:

z = f(H) =

K∑
k=1

ak(hk) · hk, (3)

where ak(hk) =
exp

(
w⊤ tanh

(
V h⊤

k

))
∑K

i exp

(
w⊤ tanh

(
V h⊤

i

)) , with learnable parameters w ∈ Rp×1

and V ∈ Rp×d.

3.3 Cohort description

DeepLesion. We included 14,601 contrast enhanced CT scans from 4,427 pa-
tients with solid tumors in different regions including bone, lung, mediastinum,
liver, kidney, abdomen, soft tissue and pelvis from the DeepLesion dataset [27].
Lesion bounding boxes were available for all CT scans whereas lesion labels were
available for 4,177 CT scans from 1,368 patients. This dataset was used to train
representation learning methods as well as for downstream task evaluation. La-
beled CT scans were used for predicting lesion location as internal downstream
task evaluation (Task 1). We separated a subset of 839 patients (20%) as a test
set for evaluation. All 10,224 unlabeled CT scans and 3,538 labeled CT scans
(80%) were included for model pre-training. The downstream task was trained
on the overlapping labeled CT scans and evaluated on the held out test set.
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RAD-ChestCT. We included 3,630 non-contrast enhanced chest CT scans from
patients with several abnormalities in the lung including emphysema, bronchiec-
tasis, pleural effusion, consolidation, calcification, bronchial wall thickening, at-
electasis, fibrosis, opacity and lung nodules from the RAD-ChestCT dataset [8].
This dataset was used to evaluate the performance of pre-trained models for
predicting lung abnormalities as a downstream task (Task 2).

NSCLC-Radiomics. We included 447 non-contrast enhanced CT scans from 422
patients with Non-Small Cell Lung Cancer (NSCLC) tumors from the NSCLC-
Radiomics dataset [2] to evaluate the performance of pre-trained models for
predicting patient stage defined as low (Stage I and II) and high (Stage III and
IV) as a downstream task (Task 3).

3.4 Image preprocessing

We consider each CT scan as a set of axial slices 700 axial slices (512× 512 px)
with Hounsfield units between -1024 and 1024. To enhance lesion visibility during
pre-training, we clip images following DeepLesion guidelines, using abdominal
windows (-175 to 275 HU) for general tissue and lung windows (-1500 to 500
HU) for pulmonary structures. Task 1 employs both windows to capture diverse
lesions, while Tasks 2 and 3 use only lung windows for their pulmonary focus.

3.5 Experimental setup

Pre-training details We evaluate MoCo and LeCL pretraining across three ar-
chitectures (ViT, VMamba, and MambaOut), using 873,849 axial CT slices from
DeepLesion (see Table 1 for architecture details). Pretraining took less than 2
days on 4 A100 GPUs (ViT-B/VMamba: 33h, MambaOut: 25h) for 100 epochs
with batch sizes of 1024-2048 and learning rate 1e−4 with 10 warm-up epochs.
We tested LeCL with λ ∈ 0, 1, 3, 5 (see Eq. (2)) All other parameters followed
the official MoCo-v3 repository configuration [7].

Downstream evaluation. We adopted the conventional linear protocol to evalu-
ate features of pretrained models. This approach involves freezing the backbone
network weights while training only the subsequent adapter. We evaluated the
performance of the frozen embeddings in three different downstream tasks and
compared them against four different pre-training models as feature extractors,
including both 2D approaches (BiomedCLIP [29] and SAM2 [25]) and 3D ap-
proaches (CT-CLIP [10] and Merlin [6]) (see Table 1 for model details). For
Tasks 1-2, we applied multi-class multi-label classification with binary cross-
entropy loss, while Task 3 used standard classification with cross-entropy loss.
All models used learning rate 1e-4, batch size 128, and 32 epochs with early
stopping. We employed 5-fold cross-validation with separate test sets for Tasks
1-2 and nested 5-fold cross-validation in Task 3. We evaluated performance using
Area Under the Receiver Operating Characteristic (AUC).
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Table 1: Overview of the number of parameters per model.
Model # Parameters [M]

BiomedCLIP [29] 86
Merlin [6] 122
SAM2 [25] 213
CT-CLIP [10] 1110
Ours-VMamba 36
Ours-MambaOut 22
Ours-ViT-B 82

Table 2: Comparison of different foundation models. AUC performance of
downstream tasks. Internal validation in DeepLesion (Task 1). The mean over
five folds is reported alongside the standard deviation as subscript.
Model Abdomen Mediastinum Pelvis Bone Soft Tissue Kidney Liver Lung Average

Merlin[6] 57.62.4 54.40.2 50.80.6 50.00.0 50.00.0 50.00.0 50.30.1 59.55.1 52.82.0
CT-CLIP [10] 69.10.8 60.52.4 57.21.7 50.00.0 50.70.7 49.90.2 56.71.0 75.70.5 58.71.2
SAM2 [25] 84.42.4 89.02.7 86.36.8 54.62.8 64.21.4 53.83.6 77.34.0 88.30.5 74.73.5
BiomedCLIP [29] 85.41.0 89.31.9 91.82.1 53.34.0 66.01.7 65.91.7 78.62.4 90.90.9 77.62.2
MambaOut-MoCo 81.31.4 88.61.2 94.80.9 53.32.8 69.50.9 63.92.0 79.92.7 90.10.4 77.71.7
MambaOut-LeCL-1 81.71.6 88.72.2 94.20.9 54.63.8 68.81.5 63.12.0 81.51.7 90.30.8 77.92.0
MambaOut-LeCL-0 82.91.3 89.41.5 94.70.5 55.44.4 69.62.6 64.00.5 80.12.2 90.80.5 78.42.1

VMamba-MoCo 82.42.0 90.50.3 92.81.4 55.44.5 67.31.3 63.63.4 79.52.8 89.90.4 77.72.4
VMamba-LeCL-1 80.61.2 87.51.8 94.60.6 53.22.7 71.02.2 62.32.7 81.32.2 90.90.5 77.71.9
VMamba-LeCL-0 82.11.0 88.11.8 94.51.6 54.63.8 71.92.3 63.92.5 78.92.2 91.20.5 78.22.2
ViT-LeCL-0 81.11.2 88.52.3 91.41.1 50.40.8 67.42.3 61.03.1 79.31.8 89.20.6 76.01.8
ViT-LeCL-1 80.01.6 85.91.5 92.81.0 50.81.0 68.41.6 61.52.2 80.11.2 90.10.2 76.21.4
ViT-ConvB 81.01.9 86.41.1 93.50.5 51.62.0 67.22.9 61.71.2 81.61.5 89.70.3 76.61.6

4 Results

Our findings demonstrate that vision-only representation learning on smaller
datasets performs comparably to larger multimodal architectures like Biomed-
CLIP. Our proposed LeCL approach with MambaOut achieved superior results:
+0.8% AUC over BiomedCLIP in lesion classification (Task 1), +1.90% AUC
in chest abnormality detection (Task 2), and +3.10% AUC in patient staging
(Task 3), with greater gains in specific conditions like soft tissue (+5.90% AUC)
and emphysema (+5.8% AUC). More detailed results for each task can be found
in Tables 2 to 4. Additionally, our ablation study for different lesion weighting
parameters for contrastive learning (Figure 2) shows that LeCL improves per-
formance compared to MoCo in all tasks for MambaOut (+0.5%, +0.35% and
+0.35% AUC in Task 1 to 3) and for VMamba (+0.5% AUC in Task 1,2). How-
ever, increasing the value of the parameter for weighting lesion representation
showed a drop in performance for λ ∈ {1, 3, 5}. With a maximum drop for λ = 5
in both MambaOut (up to -1.19% and -4% AUC for Task 1,2) and VMamba
(-0.79% and -0.9% AUC).
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Table 3: Comparison of different foundation models. AUC performance of
downstream tasks. External validation on RAD-ChestCT (Task 2).
Model Emphysema Bronchiectasis Pleural Effusion Atelectasis Fibrosis Opacity Calcification Lung Nodule Average

CT-CLIP [10] 50.60.5 50.00.0 53.21.2 50.80.4 50.00.0 51.61.0 50.80.4 51.60.5 51.10.6
SAM2 [25] 57.61.9 50.00.0 64.63.7 54.62.4 50.40.8 58.41.9 57.82.1 58.02.3 56.42.2
Merlin [6] 64.01.4 52.60.5 67.61.9 57.01.4 56.21.2 59.80.4 65.81.6 55.61.0 59.81.3
BiomedCLIP [29] 69.81.6 66.61.2 75.04.8 60.81.2 66.81.2 60.41.9 62.21.7 58.82.2 65.02.3
MambaOut-LeCL-1 74.01.4 64.61.2 80.21.0 62.21.2 67.61.2 61.22.3 61.82.7 58.22.8 66.21.9
MambaOut-MoCo 75.01.7 66.00.6 81.41.4 61.41.4 67.81.2 59.21.2 62.41.2 59.81.5 66.61.3
MambaOut-LeCL-0 75.61.0 67.62.7 79.61.0 63.22.3 66.81.6 60.81.2 61.81.3 59.81.2 66.91.6

VMamba-MoCo 72.60.5 63.21.3 80.61.0 62.20.8 64.02.4 57.22.0 61.81.3 61.81.9 65.41.5
VMamba-LeCL-1 73.62.0 63.41.7 78.60.5 62.60.5 67.64.6 58.21.2 62.41.4 59.41.6 65.72.1
VMamba-LeCL-0 73.80.8 65.01.1 77.00.6 60.61.2 68.21.2 59.20.8 63.21.2 60.01.4 65.91.1
ViT-ConvB 65.43.6 50.40.5 77.21.5 60.20.8 50.60.5 56.62.1 62.21.0 57.61.0 60.01.7
ViT-LeCL-0 73.00.9 59.43.5 76.20.8 62.01.8 66.23.7 59.81.5 62.40.8 59.60.8 64.82.1
ViT-LeCL-1 72.81.0 63.62.8 78.01.8 64.01.4 64.82.5 56.42.1 62.61.2 58.81.3 65.11.9

Table 4: Comparison of different foundation models. Performance of down-
stream tasks. External validation on NSCLC-Radiomics (Task 3).

model AUC AUPRC F1

CT-CLIP [10] 51.62.8 69.30.8 63.822.3
Merlin [6] 60.95.7 74.13.4 67.25.3
SAM2 [25] 61.45.1 74.32.8 69.85.5
BiomedCLIP [29] 65.24.2 76.52.6 67.25.4
MambaOut-LeCL-1 64.95.3 76.32.7 70.74.8
MambaOut-MoCo 66.74.1 77.32.3 70.83.7
MambaOut-LeCL-0 68.35.0 78.32.7 72.35.3

VMamba-LeCL-1 64.45.7 76.13.4 69.24.1
VMamba-LeCL-0 65.36.3 76.73.5 69.93.7
VMamba-MoCo 65.59.0 77.05.1 70.45.9
ViT-LeCL-0 61.57.6 74.74.0 66.65.0
ViT-LeCL-1 64.84.9 76.22.7 69.84.2
ViT-ConvB 67.53.7 77.82.0 71.55.9

Fig. 2: Contrastive lesion weight ablation. AUC comparison across tasks for
hyperparameter λ (see Eq. (2)).
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Finally, Fig. 3 shows the model highlighting the most informative slices from
the CT scans with higher attention while assigning less attention to images with
healthy tissues or uninformative CT scan acquisitions. These findings indicate
that our framework streamlines image processing by eliminating manual prepro-
cessing selection and tumor annotation steps by using attention mechanisms.

Fig. 3: Attention distribution across different slices: We evaluated the at-
tention distribution across slices for a patient with liver and soft tissue lesions for
BiomedCLIP (A), MambaOut architecture trained using MoCo (B) and Mam-
baOut using Lecl approach for λ = 0 (C). Blue represents attention for slices
processed in abdominal window images (D) and red represents slices processed
in lung window (E). All models show higher attention to the abdominal window
where the lesion is better depicted.

5 Conclusion

We introduced Clear, a novel framework for radiology image classification based
on representation learning. Inspired by the success of attention-based methods
in pathology, our framework combines frozen embeddings with weakly super-
vised deep learning, showing improved performance while reducing the need for
manual annotations. Within this framework, we proposed LeCL as a method
to learn lesion-aware representations. Our analysis revealed substantial limita-
tions in current models for image representation, highlighting the need for more
domain-specific models using representation learning approaches. By demon-
strating the effectiveness of using frozen embeddings from foundation models,
we provide a practical and efficient solution that enables faster development of
accurate and reliable radiology image analysis tools.
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