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Abstract. Accurate, noninvasive detection of isocitrate dehydrogenase (IDH) muta-

tion is essential for effective glioma management. Traditional methods rely on invasive 

tissue sampling, which may fail to capture a tumor’s spatial heterogeneity. While deep 

learning models have shown promise in molecular profiling, their performance is often 

limited by scarce annotated data. In contrast, foundation deep learning models offer a 

more generalizable approach for glioma imaging biomarkers. We propose a Founda-

tion-based Biomarker Network (FoundBioNet) that utilizes a SWIN-UNETR-based ar-

chitecture to noninvasively predict IDH mutation status from multi-parametric MRI. 

Two key modules are incorporated: Tumor-Aware Feature Encoding (TAFE) for ex-

tracting multi-scale, tumor-focused features, and Cross-Modality Differential (CMD) 

for highlighting subtle T2–FLAIR mismatch signals associated with IDH mutation. The 

model was trained and validated on a diverse, multi-center cohort of 1,705 glioma pa-

tients from six public datasets. Our model achieved AUCs of 90.58% ± 1.25, 88.08% 

± 3.08, 65.41% ± 3.35, and 80.31% ± 1.09 on independent test sets from EGD, TCGA, 

Ivy GAP, RHUH, and UPenn, consistently outperforming baseline approaches 

(p ≤ 0.05). Ablation studies confirmed that both the TAFE and CMD modules are es-

sential for improving predictive accuracy. By integrating large-scale pretraining and 

task-specific fine-tuning, FoundBioNet enables generalizable glioma characterization. 

This approach enhances diagnostic accuracy and interpretability, with the potential to 

enable more personalized patient care.  

Keywords: Glioma, Isocitrate Dehydrogenase, Foundation Model, Magnetic 

Resonance Imaging. 

1 Introduction 
Gliomas are the most common primary brain tumors in the central nervous system [1]. 

The 2021 WHO Classification of Tumors of the Central Nervous System emphasizes 

the importance of molecular profiling—particularly the determination of isocitrate 
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dehydrogenase (IDH) mutation status—for accurate diagnosis and prognostication [2]. 

However, conventional methods for assessing IDH mutation rely on invasive tissue 

sampling, which carries risks such as bleeding and infection and may not fully capture 

the tumor’s spatial heterogeneity [3]. This challenge highlights the need for reliable, 

noninvasive approaches to glioma molecular subtyping. 

Magnetic resonance imaging (MRI) is a promising modality for this purpose due to 

its routine clinical use and its capacity to capture diverse tissue characteristics across 

multiple sequences [4]. For instance, IDH-mutant gliomas may exhibit well-defined 

margins and a characteristic T2–FLAIR mismatch sign, while IDH-wildtype tumors 

tend to display less distinct boundaries and heterogeneous signal patterns [5]. Despite 

these discernible imaging features, accurately predicting IDH mutation status from 

MRI remains challenging because of intratumoral heterogeneity and the subtle nature 

of these cues [6]. 

Early radiomics approaches attempted to address this challenge by extracting hand-

crafted features from manually delineated tumor regions [8]. Although these methods 

provided initial insights, their dependence on manual segmentation and feature engi-

neering limited their reproducibility and accuracy [9]. More recently, deep learning 

techniques—especially convolutional neural networks (CNNs)—have been applied to 

directly predict molecular profiles from multi-parametric MRI [11], [13]. Yet, these 

approaches often struggle with limited annotated data and the complex variability in-

herent in glioma imaging [13]. 

To overcome these obstacles, foundation deep learning models have been developed 

to use large-scale, self-supervised pretraining to learn robust, task-agnostic representa-

tions. These models improve generalizability and performance, especially in scenarios 

with limited annotated data [14]. Building on this approach, we introduce a specialized 

framework, Foundation-based Biomarker Network (FoundBioNet), for noninvasive 

IDH mutation prediction. FoundBioNet is based on the SWIN-UNETR architecture 

from the BrainSegFounder model [15], which was pretrained using a two-phase strat-

egy on over 42,000 brain MRI cases, including both healthy and diseased subjects, and 

achieved superior segmentation accuracy on benchmark datasets. Expanding on this 

strong model, FoundBioNet integrates two novel modules: a Tumor-Aware Feature En-

coding (TAFE) module to extracts multi-scale, tumor-specific features to capture nu-

anced imaging patterns associated with molecular markers; and a Cross-Modality Dif-

ferential (CMD) module to highlight subtle imaging cues, particularly the T2–FLAIR 

mismatch, to enhance the detection of IDH mutant cases. 

We train and validate the FoundBioNet model on a diverse, multi-center dataset of 

1,705 glioma patients, demonstrating its strong generalizability and superiority over 

baseline methods. Through large-scale pretraining and task-specific fine-tuning, our 

tumor-centric approach enhances predictive accuracy and interpretability in noninva-

sive glioma characterization. 

2 Method 
2.1 Patient Population 

We collected preoperative MRI scans from 2,428 glioma patients across six public da-

tasets: The Cancer Genome Atlas (TCGA), specifically the TCGA-LGG and TCGA-
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GBM collections, Ivy Glioblastoma Atlas Project (Ivy GAP), Río Hortega University 

Hospital Glioblastoma Dataset (RHUH), University of Pennsylvania glioblastoma da-

taset (UPenn), University of California San Francisco Preoperative Diffuse Glioma 

MRI (UCSF-PDGM), and Erasmus Glioma Database (EGD). Patients included both 

low-grade (grades 2 and 3) and high-grade (grade 4) CNS WHO classifications. Inclu-

sion criteria required availability of T1-weighted (T1), postcontrast T1-weighted 

(T1C), T2-weighted (T2), and T2-weighted fluid-attenuated inversion recovery 

(FLAIR) MRI scans. After excluding cases with missing preoperative scans (228), in-

complete pathology data (204), or failed preprocessing (81), 1,705 patients remained in 

the final cohort (354 IDH-mutant, 1,351 IDH-wildtype) (Table 1). 

Table 1. Patient characteristics across the six datasets: TCGA (The Cancer Genome Atlas), Ivy 

GAP (Ivy Glioblastoma Atlas Project), RHUH-GBM (Río Hortega University Hospital Glioblas-

toma Dataset), UPenn-GBM (University of Pennsylvania Glioblastoma Dataset), UCSF-PDGM 

(University of California San Francisco Preoperative Diffuse Glioma MRI), and EGD (Erasmus 

Glioma Database). Class distributions for molecular and histological grades are reported as counts 

and percentages.  

Datasets 
TCGA 

(n = 213) 

UCSF-PDGM 

(n = 489) 

EGD 

(n = 415) 

Ivy Gap 

(n = 34) 

UPenn  

(n = 514) 

RHUH 

(n = 40) 

Grade       

2 47 (22%) 56 (11%) 119 (16%) 0 0 0 

3 59 (28%) 43 (9%) 78 (11%) 0 0 0 

4 107 (50%) 390 (80%) 474 (66%) 22 (65%) 610 (100%) 40 (100%) 
Unknown 0 0 48 (7%) 12 (35%) 0 0 

IDH 
      

Mutated 89 (42%) 103 (21%) 139 (20%) 3 (9%) 16 (2%) 4 (10%) 

Wildtype 124 (58%) 386 (79%) 276 (38%) 31 (91%) 498 (82%) 36 (90%) 

Unknown 0 0 304 (42%) 0 96 (16%) 0 

 

To optimize dataset utilization, we established two experimental scenarios: (1) employ-

ing the TCGA and UCSF-PDGM cohorts for training and internal validation, with the 

other datasets used as independent test sets; and (2) using the EGD and UCSF-PDGM 

datasets for training and internal validation, with TCGA serving as an external valida-

tion set. Due to the retrospective nature of this study, imaging protocols varied across 

institutions. To maintain clinical heterogeneity, no cases were excluded based on ac-

quisition parameters or image quality. For datasets with available raw data (RHUH-

GBM and TCGA), we applied the Integrative Imaging Informatics for Cancer Re-

search: Workflow Automation for Neuro-oncology (I3CR-WANO) framework to per-

form preprocessing [16]. Whether processed using I3CR-WANO or provided prepro-

cessed, all datasets underwent a uniform pipeline that included registration to a com-

mon anatomical space at a voxel resolution of 1 × 1 × 1 mm³, bias field correction, and 

skull stripping to remove nonbrain tissue. Additionally, all scans were coregistered to 

the T1 or T1C images, normalized using z-score standardization, and cropped to di-

mensions of 96 × 96 × 96 voxels. We evaluated performance using accuracy (ACC), 

AUC, F1 score (F1), Matthews Correlation Coefficient (MCC) and area under the curve 

(AUC). AUC measures how well the model separates classes across thresholds, while 

F1 balances precision and recall. MCC is especially important for imbalanced data, as 

it considers all parts of the confusion matrix and provides a balanced measure ranging 

from –1 (worst) to +1 (best) [17]. 
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2.2 FoundBioNet Model 

We build on the 62M-parameter BrainSegFounder-Tiny model with a SWIN-UNETR 

backbone, combining a vision transformer encoder with a U-Net–style decoder [15]. 

Initially pretrained using a self-supervised dual-phase strategy on large-scale neuroim-

aging datasets, the model was fine-tuned on the BraTS 2021 challenge [18] to capture 

essential anatomical and disease-specific features. For the glioma study, we further re-

fined the stage 3 pretrained BrainSegFounder weights [15] using the UCSF-PDGM da-

taset with a 5-fold cross-validation approach. To ensure an unbiased evaluation, cases 

overlapping with the BraTS 2021 training set were excluded. The refined model was 

then adapted specifically for predicting IDH mutation status. As shown in Figure 1, our 

classification framework consists of two key modules: TAFE, which extracts multi-

scale, tumor-focused features from all MRI sequences, and CMD, which enhances sub-

tle T2–FLAIR mismatch signals. These features are then fused through a Dual-Stream 

Fusion (DSF) module. The network is trained end-to-end with a joint loss that balances 

segmentation (auxiliary task) and IDH classification (main task) objectives. 

 

TAFE Module: Guided by tumor segmentation, TAFE refines feature extraction 

within SWIN-UNETR. The decoder produces segmentation logits S ∈ R𝐵×4×𝐷×𝐻×𝑊 su-

pervised (with Dice loss) to emphasize tumor regions. Meanwhile, the encoder gener-

ates multi-scale feature maps {𝒙𝒊}
4

𝑖 = 1
. Global average pooling (GAP) is applied to 

selected stages to form feature vectors: 

 X
𝑔𝑎𝑝

(𝑖)  = GAP (𝑥𝑖)  ∈  R 𝐵×𝑑𝑖 , (1) 

The default setup uses the deepest feature 𝒙𝟒, whereas multi-scale aggregation was 

evaluated in the ablation study. 

CMD Module: The T2–FLAIR mismatch sign is an imaging marker visible on 

standard T2 and FLAIR MRI sequences [5]. Although it is highly specific for IDH-

mutant gliomas, its sensitivity is limited [19]. To capture this sign, each T2 and FLAIR 

input is softly gated using the tumor probability map from the segmentation branch 

(whole tumor vs. background). These gated volumes pass through shared 3D convolu-

tions to produce features FT2 and FFLAIR, and their difference is amplified: 

 Fdiff = γ ⋅ (FT2 − FFLAIR) (γ > 1), (2) 

Next, channel attention is then applied: 

 CA (𝐹diff) = σ (MLP (GAP (𝐹diff)) + MLP (GMP (𝐹diff))), (3) 

Spatial attention is computed by pooling along the channel axis, concatenating, and 

applying a 3D convolution followed by ReLU and a sigmoid activation. The final at-

tention map 𝐴𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ is obtained by combining channel and spatial attention through 

element-wise multiplication. This map re-weights the original features via residual 
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element-wise multiplication, resulting in enhanced feature maps 𝐹′T2 and 

𝐹′FLAIR, which are then aggregated using adaptive adaptive global pooling: 

 𝐶CMD = MLP ([GAP (𝐹′T2), GAP (𝐹′FLAIR)]), 𝐶CMD ∈ R𝐵×𝑁𝑐𝑙𝑠   (4) 

DSF Module: The DSF module fuses the classification outputs from TAFE and CMD 

modules (CTAFE and CCMD) by concatenation: 

 Cfused = [CTAFE,  CCMD], (5) 

A lightweight multilayer perceptron then produces the final classification logits Cfinal. 

The entire network is optimized with a multi-task loss: 

 Ltotal =α Lseg(S, G) + β Lcla (C, y), (6) 

where S represents the segmentation logits, G the ground-truth tumor mask, C the clas-

sification logits, y the IDH mutation labels, and α and β balance the two losses. 

Figure 1. Overview of the proposed multi-task learning model. The TAFE module aggre-

gates features from the encoder stages of SWIN-UNETR, specifically from stages 𝑥1 to 𝑥4. 

This configuration corresponds to one of the four assessed setups of the TAFE module, re-

ferred to as TAFE-4. The numbers in the subgraph indicate feature map dimensions. 
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For interpretability analysis, occlusion sensitivity maps [20] were generated using 

MONAI’s OcclusionSensitivity utility by sliding a 16 × 16 × 16 voxel mask (50% over-

lap) across the 3D input volume and recording changes in the predicted probability for 

the ground-truth class. The resulting scores were Gaussian-smoothed (σ = 1), inverted, 

and min–max normalized to highlight regions most critical for prediction. 

We used five-fold cross-validation for hyperparameter optimization, and then re-

trained the model and tested it on independent sets, averaging predictions from all five 

runs (mean ± standard deviation). Training ran on an A100 GPU (32 GB) for up to 100 

epochs (batch size 2) with Adam (learning rate = 1e-4) and early stopping (patience = 

5). To mitigate data imbalance and overfitting, we applied online augmentations (ran-

dom flipping, rotation, intensity scaling,) and a 50% dropout. Statistical analyses were 

conducted in R (v4.4.1) using the rstatix package. Since the data followed a normal 

distribution (Shapiro-Wilk test), we applied ANOVA with post-hoc pairwise compari-

sons (p < 0.05) for the AUC metric, with the confidence interval computed using the 

DeLong method [21]. Our code is available on https://github.com/SomayyehF/Gli-

oma_Biomarkers.git. 

3 Results 

3.1 Internal Cross-Validation and External Validation 

As reported in Table 2, FoundBioNet consistently outperformed baseline models, in-

cluding ViT variants—the foundation-based model for glioma analysis [22]. While 

models such as ResNet10, SENet101 and ViT-16 achieved competitive results during 

cross-validation, their performance dropped significantly on external test sets, espe-

cially when balancing MCC and F1 scores. This decline likely reflects their limited 

capacity to generalize to data with different imaging characteristics—a limitation that 

our segmentation-guided approach appears to overcome. These findings align with re-

cent multi-task studies [27], [31], which emphasize the benefits of simultaneously an-

alyzing tumor localization and genotype. However, our study further demonstrates that 

a foundation model-based approach enhances both stability and generalizability across 

diverse patient cohorts. 

3.2 Ablation Experiments 

Table 3 details the ablation results for the TAFE and CMD modules, both individually 

and combined through DSF, on the EGD test cohort. When used alone, the TAFE mod-

ule achieved an AUC of 84.38%, while the CMD module yielded slightly higher per-

formance across all metrics. Notably, combining both modules improved the results 

further, reaching an AUC of 90.58% with reduced variance over five runs. Although 

the differences between the individual modules and their fused approach were not sta-

tistically significant, the trend suggests that integrating segmentation-derived features 

with cross-modality differentials enhances predictive performance, consistent with a 

previous study [27]. 

To investigate TAFE more deeply, we compared it against a baseline Swin Trans-

former (SwinT) under four feature-aggregation depths: using only the deepest encoder 
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feature (𝑥4 , denoted “1”) or progressively adding more encoder stages ( 𝑥3 − 𝑥4 , 

𝑥2 − 𝑥4, 𝑥1 − 𝑥4). As presented in Table 4, incorporating tumor-guided information 

consistently improved performance across all conditions. For instance, TAFE–1 

achieved an AUC of 86.62%, significantly outperforming the baseline SwinT–1 (p < 

0.05). Increasing the feature aggregation depth without tumor guidance caused the 

baseline model’s performance to drop sharply. In contrast, TAFE–4 maintained robust 

accuracy and continued to focus on clinically relevant tumor areas, as confirmed by the 

occlusion sensitivity maps in Figure 2. This suggests that segmentation-guided cues, 

regardless of depth, are more valuable than simply increasing the volume of features, 

aligning with recent findings [22], [23].  

Table 2. The mean ± standard deviation of evaluation metrics for prediction models across 5-fold 

cross validation and external test cohorts. For a fair comparison, the ViT was trained using self-

supervised pre-trained weights, while other models were trained both with and without ImageNet 

pre-trained weights. The best results for each model were reported. Asterisks indicate statistical 

significance compared to FoundBioNet, where * p < 0.05, ** p < 0.001, and *** p < 0.0001.  

Dataset Model 
ACC 

(mean±std) (%) 

F1 
(mean±std) (%) 

MCC 
(mean±std) (%) 

AUC 
(mean±std) (%) 

Internal  

Validation 

ResNet10 71.10 ± 2.19 59.77 ± 5.03 41.01 ± 4.04 82.31 ± 3.07 * 

ResNet50 74.17 ± 11.14 67.53 ± 23.44 43.40 ± 10.33 78.60 ± 11.62 

SENet101 74.43 ± 6.63 70.38 ± 14.71 47.64 ± 8.21 81.38 ± 3.64 * 
DenseNet121 70.03 ± 4.71 62.79 ± 3.04 40.08 ± 3.98 73.65 ± 4.16 * 

ViT-4 80.21 ± 5.03 81.19 ± 5.56 61.10 ± 6.02 88.83 ± 7.04 * 

ViT-16 78.12 ± 6.19 76.34 ± 8.44 56.4 ± 6.12 85.83 ± 2.73 
FoundBioNet 90.88 ± 2.35 90.89 ± 2.35 82.06 ± 4.67 93.31 ± 2.46 

EGD 

ResNet10 56.56 ± 1.65 52.20 ± 2.32 13.43 ± 3.36 56.42 ± 1.79*** 

ResNet50 55.01 ± 1.26 60.37 ± 3.96 10.78 ± 2.84 53.43 ± 2.75** 
SENet101 52.35 ± 4.66 49.10 ± 3.90 12.25 ± 8.10 60.31 ± 4.94** 

DenseNet121 62.64 ± 4.68 50.89 ± 6.91 22.21 ± 8.77 64.52 ± 4.58* 

ViT-4 75.01 ± 5.58 64.67 ± 7.04 46.69 ± 9.57 80.56 ± 5.76* 
ViT-16 72.90 ± 7.61 53.95 ± 15.12 37.45 ± 13.57 75.20 ± 7.60* 

FoundBioNet 83.23 ± 1.27 83.70 ± 0.54 67.01 ± 2.10 90.58 ± 1.25 

TCGA 

ResNet10 54.36 ± 4.59 43.63 ± 2.22 7.87 ± 2.19 54.98 ± 1.76*** 

ResNet50 48.77 ± 6.21 44.15 ± 4.51 4.16 ± 3.06 52.61 ± 2.75** 

SENet101 50.47 ± 5.47 56.38 ± 6.29 1.02 ± 11.55 54.12 ± 7.12* 

DenseNet121 57.35 ± 4.61 54.53 ± 12.38 14.97 ± 9.21 60.10 ± 4.97* 

ViT-4 68.39 ± 7.05 65.86 ± 11.89 39.25 ± 14.39 75.65 ± 8.44* 

ViT-16 60.79 ± 9.54 49.02 ± 26.95 23.73 ± 18.90 67.30 ± 10.71 

FoundBioNet 81.22 ± 3.60 79.17 ± 3.34 62.79 ± 6.56 88.08 ± 3.08 

Ivy GAP, 
RHUH 

ResNet10 52.02 ± 1.92 26.05 ± 3.48 6.55 ± 6.08 38.44 ± 3.33* 

ResNet50 56.09 ± 4.94 34.16 ± 3.12 18.44 ± 13.61 41.01 ± 21.27 
SENet101 53.19 ± 2.15 24.48 ± 8.65 11.30 ± 7.29 49.46 ± 6.49* 

DenseNet121 51.30 ± 1.79 11.44 ± 8.54 9.62 ± 9.91 50.45 ± 1.75* 

ViT-4 54.78 ± 3.87 60.15 ± 10.92 10.61 ± 8.79 51.88 ± 2.41 
ViT-16 60.72 ± 5.35 53.89 ± 18.22 20.83 ± 13.01 59.15 ± 3.95 

FoundBioNet 66.04 ± 2.49 61.09 ± 2.03 33.51 ± 5.56 65.41 ± 3.35 

UPenn  

ResNet10 95.38 ± 1.74 6.82 ± 3.03 5.53 ± 2.81 52.69 ± 3.74 

ResNet50 89.71 ± 3.14 7.41 ± 2.19 2.32 ± 2.38 37.82 ± 7.56* 

SENet101 81.40 ± 8.18 8.09 ± 9.06 6.22 ± 4.78 63.17 ± 8.88 

DenseNet121 90.61 ± 3.11 4.92 ± 3.38 1.65 ± 1.87 55.07 ± 1.98 
ViT-4 63.43 ± 11.14 11.22 ± 2.21 13.45 ± 4.66 75.17 ± 7.06 

ViT-16 73.74 ± 16.03 11.68 ± 4.34 12.76 ± 6.11 60.66 ± 8.43 

FoundBioNet 86.81 ± 4.47 24.11 ± 4.44 26.30 ± 4.14 80.31 ± 1.09 
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Table 3. Ablation studies on the three proposed modules for IDH prediction on the EGD 

(Erasmus Glioma Database) test dataset. The best-performing mean values are highlighted 

in bold. 

TAFE CMD 
ACC 

(mean±std) (%) 

F1 
(mean±std) (%) 

MCC 
(mean±std) (%) 

AUC 
(mean±std) (%) 

✔  76.34 ± 8.59 74.53 ± 12.75 54.42 ± 15.70 84.38 ± 7.78 

 ✔ 79.28 ± 4.92 78.50 ± 8.63 60.04 ± 8.08 85.97 ± 2.44 

✔ ✔ 83.23 ± 1.27 83.70 ± 0.54 67.01± 2.10 90.58 ± 1.25 

 

Table 4. Comparison of segmentation guidance and feature aggregation depth on the TAFE mod-

ule performance on the EGD (Erasmus Glioma Database) test dataset. The best-performing mean 

values are highlighted in bold. ‘*’ denotes pairwise statistical significance between TAFE and its 

corresponding SwinT module, ‘†’ indicates statistical significance compared to the SwinT-4 

method, where * p < 0.05. 

Model  

Configuration 
ACC 

(mean±std) (%) 

F1 
(mean±std) (%) 

MCC 
(mean±std) (%) 

AUC 
(mean±std) (%) 

TAFE–1 74.19 ± 3.73 73.34 ± 7.82 50.86 ± 5.60 86.62 ± 1.67† 

SwinT-1 70.98 ± 2.82 60.74 ± 2.69 39.25 ± 4.00 75.38 ± 3.87*† 

TAFE–2 76.34 ± 8.59 74.53 ± 12.75 54.42 ± 15.70 84.38 ± 7.78† 

SwinT-2 65.64 ± 7.89 49.70 ± 10.89 24.95 ± 15.89 65.66 ± 10.45 

TAFE–3 75.05 ± 3.66 73.56 ± 9.73 51.08 ± 12.95 80.72 ± 7.42 

SwinT-3 65.98 ± 11.57 55.80 ± 8.91 30.01 ± 18.54 68.73 ± 12.78 

TAFE–4 73.69 ± 7.05 74.49 ± 5.42 48.23 ± 14.03 80.41 ± 7.58 

SwinT-4 53.30 ± 8.22 50.16 ± 4.67 16.50 ± 10.86 61.86 ± 6.03 

Although the results are promising, some limitations remain. A significant challenge is 

the model's reliance on accurate tumor segmentation—especially for the CMD mod-

ule—to guide feature extraction, which may reduce its effectiveness when segmenta-

tion quality is poor. To mitigate this, we initialized the segmentation branch with fine‐

tuned weights for high-quality initialization. Rather than applying a binary crop, we 

employed a soft probability map with a fixed intensity floor, preserving contextual in-

formation outside the tumor. The CMD module further amplifies residual mismatch 

signals, enabling the model to capture even weak tumor-related cues. Global average 

pooling compresses feature volumes into holistic vectors. The training procedure 

Figure 2. Comparison of occlusion sensitivity maps for the TAFE module (with segmentation 

guidance) and Swin-T (without it) under two setups: Swin-T1, TAEF-1, Swin-T4, and TAEF-4, 

overlaid on a FLAIR MRI slice. Swin-T1, TAEF-1, and TAEF-4 correctly predicted IDH status, 

while Swin-T4 misclassified it, likely due to focusing on non-tumoral regions. 
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assigns greater weight to the classification loss to prioritize IDH-relevant supervision. 

Additionally, early stopping, checkpointing, and fold selection are all based on IDH 

classification accuracy rather than segmentation Dice. For future work, segmentation 

reliance may be further reduced by incorporating uncertainty-gated fusion via Monte 

Carlo dropout [29], curriculum-based training schedules to gradually decouple segmen-

tation guidance [30], and semi-supervised mask refinement through teacher–student 

consistency learning [31]. 

Another limitation is the model’s sensitivity to class imbalance. We applied targeted 

online augmentations to balance the underrepresented IDH-mutant class with the wild-

type class. This strategy enabled FoundBioNet to maintain strong performance on mod-

erately imbalanced cohorts (TCGA: 42% mutant vs. 58% wild-type; EGD: 33% vs. 

67%), but performance declined on highly skewed datasets such as UPenn-GBM (16 

IDH-mutant vs. 498 IDH-wild-type cases). This likely stems from the limited diversity 

of synthetic samples, which remain within the convex hull of existing data. To address 

this, we plan to incorporate more advanced augmentation methods, including variants 

of MixUp, CutMix, and SnapMix [32], to generate more diverse and generalizable mi-

nority representations. Additionally, fixed-size cropping of input scans to manage 

memory constraints may occasionally exclude brain, though all cases were visually 

checked to ensure tumor coverage. 

4 Conclusion 

We presented FoundBioNet, a foundation-based model that noninvasively predicts IDH 

mutation status from multi-parametric MRI. By combining tumor-aware feature encod-

ing with T2-FLAIR mismatch detection, FoundBioNet consistently outperforms base-

line convolutional and transformer models across multiple multi-center datasets. Alt-

hough further optimization is needed, our interpretable and novel approach holds sig-

nificant potential for integrating advanced deep learning techniques into clinical work-

flows for personalized glioma management. 
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